Search    ENTER KEYWORD
MSDS Material Safety Data Sheet
CAS

N/A

File Name: www2_azmax_co_jp---hydrophobicity.asp
Gelest, Inc.




In Japan:
For commercial and research quantities contact:
AZmax Co. Ltd. Tokyo Office
Matsuda Yaesudori Bld F8
1-10-7 Hatchoubori, Chuo-Ku
Tokyo 104-0032
Tel: 81-3-5543-1630
Fax: 81-3-5543-0312
e-mail: sales@azmax.co.jp
on-line catalog: www.azmax.co.jp




Gelest, Inc.
Telephone: General 215-547-1015
Order Entry 888-734-8344
FAX: 215-547-2484
Internet: www.gelest.com
Correspondence: 11 East Steel Rd.
Morrisville, PA 19067
For further information consult our web site at: www.gelest.com


In South-East Asia:
In Europe:
Altus Technologies Pte Ltd
Gelest Ltd
196 Pandan Loop #06-09
46 Pickering Street
Pantech Industrial Complex
Maidstone
Singapore 128384
Kent ME15 9RR
Tel: (65) 6779 7666
United Kingdom
Fax: (65) 6779-7555
Tel: +44(0) 1622 741115
www.altus.com.sg
Fax: +44(0) 1622 741114
e-mail: europe@gelest.com



Front Cover Photos: Water rolls off a duck’s back. Lotus leaves exhibit superhydrophobicity. Biological systems
are dependent on water, but at the same time must control the interaction. In a sense, all living organisms exhibit
behaviors that can be described as both hydrophobic and hydrophilic.


Sales of all products listed are subject to the published terms and conditions of Gelest, Inc.
Gelest, Inc.


Hydrophobicity, Hydrophilicity
and Silane Surface Modification
TABLE OF CONTENTS

Silanes and Surface Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Water, Hydrophobicity and Hydrophilicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Wettability and Contact Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Critical Surface Tension and Adhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
How does a Silane Modify a Surface? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Selecting a Silane for Surface Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Hydrophobic Surface Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Hydrophilic Surface Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Range of Water Interaction with Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Reacting with the Substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Special Topics:
Dipodal Silanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Linker Length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Partition, Orientation and Self-Assembly in Bonded Phases . . . . . . . . . . . . . . . . . . . 15
Modification of Metal Substrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Difficult Substrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Applying a Silane Surface Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Hydrophobic Silane Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Silane Properties:
Hydrophobic Silanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Hydrophobic Silanes - Dipodal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Hydrophobic Silanes - Polymeric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Hydrophilic Silanes - Polar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Hydrophilic Silanes - Hydrogen Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Hydrophilic Silanes - Hydroxylic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Hydrophilic Silanes - Ionic / Charge Inducible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Hydrophilic Silanes - Polymeric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Hydrophilic Silanes - Epoxy / Masked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Silyl Hydrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Hydrophobicity, Hydrophilicity and Silane Surface Modification
by Barry Arkles

©2006 Gelest, Inc.


FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
1
Gelest, Inc.

Silanes and Surface Modification
Silanes are silicon chemicals that possess a hydrolytically sensitive center that can react with
inorganic substrates such as glass to form stable covalent bonds and possess an organic
substitution that alters the physical interactions of treated substrates.



OCH2CH3
CH3CH2CH2CH2CH2CH2CH2CH2� Si� OCH2CH3
OCH2CH3
organic substitution allows permanent property modification


hydrolyzeable alkoxy (alcohol) groups


Applications include:
Property modifications include:
Architectural Coatings
Hydrophobicity
Water-Repellents
Release
Anti-stiction Coatings for MEMs
Dielectric
Mineral Surface Treatments
Absorption
Fillers for Composites
Orientation
Pigment Dispersants
Hydrophilicity
Dielectric Coatings
Charge Conduction
Anti-fog Coatings
Release Coatings
Optical (LCD) Coatings
Bonded Phases
Self-Assembled Monolayers (SAMs)
Crosslinkers for Silicones
Nanoparticle Synthesis


In contrast with silanes utilized as coupling agents in adhesive applications, silanes used to
modify the surface energy or wettability of substrates under normal conditions do not impart
chemical reactivity to the substrate. They are often referred to as non-functional silanes.
The main classes of silanes utilized to effect surface energy modification without imparting
reactivity are:

Hydrophobic Silanes Hydrophilic Silanes
Methyl Polar
Linear Alkyl Hydroxylic
Branched Alkyl Ionic
Fluorinated Alkyl Charge inducible /charge switchable
Aryl Embedded Hydrophilicity
Dipodal Masked




(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
2
Gelest, Inc.

Water, Hydrophobicity and Hydrophilicity Hydrogen
Hydrophobic and Hydrophilic are frequently used descriptors of surfaces. Oxygen
A surface is hydrophobic if it tends not to adsorb water or be wetted by
water. A surface is hydrophilic if it tends to adsorb water or be wetted
water
by water. More particularly, the terms describe the interaction of the
boundary layer of a solid phase with liquid or vapor water. Silanes can be
used to modify the interaction of boundary layers of solids with water with
a high degree of control, effecting variable degrees of hydrophobicity or
hydrophilicity.
Since the interaction of water with surfaces is frequently used to define
surface properties, a brief review of its structure and properties can be help-
ful. Although the structure of water is a subject of early discussion in the
study of physical sciences, it is interesting to note that the structure of
liquid water is still not solved and, even so, most technologists lose appre-
ciation of what is known about its structure and properties.
molecule of water showing dipole
The quantum calculation of the structure of an isolated H2O molecule
has evolved to the currently accepted model which demonstrates a strong
dipole, but no lone electron pairs associated with sp3 hybridized orbitals of
oxygen. This model of isolated H2O conforms most closely to the vapor
state and extrapolation often leads to the conclusion that water is a collec-
tion of individual molecules which associate with each other primarily
through dipole interactions. The polar nature of water, with its partial pos-
itive and partial negative dipole, explains why bulk water readily dissolves
many ionic species and interacts with ionic surfaces. The difference
between isolated vapor phase water and bulk liquid water is much more
extreme than can be accounted for by a model relying only on dipole inter-
action. The properties of bulk liquid water are strongly influenced by
hydrogen bond interactions. In the liquid state, in spite of 80% of the elec- 2 molecules showing hydrogen bond
trons being concerned with bonding, the three atoms of a water molecule
do not stay together as discrete molecules. The hydrogen atoms are con-
stantly exchanging between water molecules in a protonation-deprotona-
tion process. Both acids and bases catalyze hydrogen exchange and, even
when at its slowest rate of exchange (at pH 7), the average residence time
of a hydrogen atom is only about a millisecond. In the liquid state, water
molecules are bound to each other by an average of three hydrogen bonds.
Hydrogen bonds arise when a hydrogen that is covalently bound to an oxy-
gen in one molecule of water nears another oxygen from another water
molecule. The electrophilic oxygen atom “pulls� the hydrogen closer to
itself. The end result is that the hydrogen is now shared (unequally)
between the oxygen to which it is covalently bound and the electrophilic
oxygen to which it is attracted (O-H...O). Each hydrogen bond has an
average energy of 20 kJ/mol. This is much less than an O-H covalent bond,
which is 460 kJ/mol. Even though an individual hydrogen bond is rela-
tively weak, the large number of hydrogen bonds that exist in water which ice - molecules of water with 4 hydrogen bonds
pull the molecules together have a significant role in giving water its spe-
cial bulk properties. In ice, water molecules are highly organized with four
hydrogen bonds. Liquid water is thought to be a combination of domains
of molecules with 3-4 hydrogen bonds separated by domains with 2-3
hydrogen bonds, subject to constant turnover - the flickering cluster model.
This brief description of water is provided in order to give the
insight that whenever a solid surface interacts with bulk water it is inter-
acting with a soft matter structure, not simply a collection of individual
molecules. Surface interactions with water must compete with a variety
of internal interactions of liquid phase water: van der Waals forces, liquid water - flickering cluster model
dipole interactions, hydrogen bonding and proton exchange. regions of molecules with 3-4 hydrogen bonds
separated by regions with 2-3 hydrogen bonds
(not shown: out of plane hydrogen bonds)

3
Gelest, Inc.

Wettability and Contact Angle Contact Angle Defines Wettability
A surface is said to be wetted if a liquid spreads over the
surface evenly without the formation of droplets. When the
liquid is water and it spreads over the surface without the
formation of droplets, the surface is said to be hydrophilic.
In terms of energetics, this implies that the forces associated
with the interaction of water with the surface are greater
than the cohesive forces associated with bulk liquid water.
Water droplets form on hydrophobic surfaces, implying that
cohesive forces associated with bulk water are greater than
Contact Angle of Water on
the forces associated with the interaction of water with the
Smooth Surfaces
surface. Practically, hydrophobicity and hydrophilicity are
relative terms. A simple quantitative method for defining
the relative degree of interaction of a liquid with a solid sur- heptadecafluorodecyltrimethoxysilane* 115°
poly(tetrafluoroethylene) 108-112°
face is the contact angle of a liquid droplet on a solid sub-
poly(propylene) 108°
strate. If the contact angle of water is less than 30°, the sur-
octadecyldimethylchlorosilane* 110°
face is designated hydrophilic since the forces of interaction
octadecyltrichlorosilane* 102-109°
between water and the surface nearly equal the cohesive octyldimethylchlorosilane* 104°
forces of bulk water and water does not cleanly drain from dimethyldichlorosilane* 95-105°
the surface. If water spreads over a surface and the contact butyldimethylchlorosilane* 100°
angle at the spreading front edge of the water is less than trimethylchlorosilane* 90-100°
poly(ethylene) 88-103°
10°, the surface is often designated as superhydrophilic pro-
poly(styrene) 94°
vided that the surface is not absorbing the water, dissolving
poly(chlorotrifluoroethylene) 90°
in the water or reacting with the water. On a hydrophobic
human skin 75-90°
surface, water forms distinct droplets. As the hydrophobici- diamond 87°
ty increases, the contact angle of the droplets with the sur- graphite 86°
face increases. Surfaces with contact angles greater than silicon (etched) 86-88°
talc 50-55°
90° are designated as hydrophobic. The theoretical maxi-
chitosan 80-81°
mum contact angle for water on a smooth surface is 120°.
steel 70-75°
Micro-textured or micro-patterned surfaces with hydropho-
gold, typical (see gold, clean) 66°
bic asperities can exhibit apparent contact angles exceeding intestinal mucosa 50-60°
150° and are associated with superhydrophobicity and the glycidoxypropyltrimethoxysilane* 49°
“lotus effect�. kaolin 42-46°
platinum 40°
Ordinary Surface- silicon nitride 28-30°
“typical wetting� silver iodide 17°
soda-lime glass <15°
gold, clean <10°
Hydrophobic-
“poor wetting� *Note: Contact angles for silanes refer to treated surfaces.



Hydrophilic-
“good wetting�




PLEASE INQUIRE ABOUT BULK QUANTITIES
4
Gelest, Inc.

Critical Surface Tension and Adhesion Contact Angle Defines Wettability
While the contact angle of water on a substrate is a good
indicator of the relative hydrophobicity or hydrophilicity of a
substrate, it is not a good indicator for the wettability of the
substrate by other liquids. Critical surface tension is
associated with the wettability or release properties of a solid.
It serves as a better predictor of the behavior of a solid with a
range of liquids.
Critical surface tensions
Liquids with a surface tension below the critical surface
c
tension ( c) of a substrate will wet the surface, i.e., show a
dynes/cm
contact angle of 0 (cos e = 1). The critical surface tension is
heptadecafluorodecyltrichlorosilane 12.0
unique for any solid and is determined by plotting the cosine
poly(tetrafluoroethylene) 18.5
of the contact angles of liquids of different surface tensions octadecyltrichlorosilane 20-24
and extrapolating to 1. The contact angle is given by Young’s methyltrimethoxysilane 22.5
equation: nonafluorohexyltrimethoxysilane 23.0
sv � sl = lv � cos e vinyltriethoxysilane 25
paraffin wax 25.5
where sl = interfacial surface tension, lv = surface tension
ethyltrimethoxysilane 27.0
of liquid.
propyltrimethoxysilane 28.5
glass, soda-lime (wet) 30.0
Hydrophilic behavior is generally observed by surfaces
poly(chlorotrifluoroethylene) 31.0
with critical surface tensions greater than 45 dynes/cm. As
poly(propylene) 31.0
the critical surface increases, the expected decrease in contact poly(propylene oxide) 32
angle is accompanied with stronger adsorptive behavior and polyethylene 33.0
with increased exotherms associated with the adsorption. trifluoropropyltrimethoxysilane 33.5
3-(2-aminoethyl)-aminopropyltrimethoxysilane 33.5
Hydrophobic behavior is generally observed by surfaces poly(styrene) 34
with critical surface tensions less than 35 dynes/cm. At first, p-tolyltrimethoxysilane 34
cyanoethyltrimethoxysilane 34
the decrease in critical surface tension is associated with
aminopropyltriethoxysilane 35
oleophilic behavior, i.e. the wetting of the surfaces by hydro-
polymethylmethacrylate 39
carbon oils. As the critical surface tensions decrease below
polyvinylchloride 39
20 dynes/cm, the surfaces resist wetting by hydrocarbon oils phenyltrimethoxysilane 40.0
and are considered oleophobic as well as hydrophobic. chloropropyltrimethoxysilane 40.5
mercaptopropyltrimethoxysilane 41
Silane treatment has allowed control of thixotropic activity glycidoxypropyltrimethoxysilane 42.5
of silica and clays in grease and oil applications. In the rein- poly(ethyleneterephthalate) 43
forcement of thermosets and thermoplastics with glass fibers, poly(ethylene oxide) 43-45
copper (dry) 44
one approach for optimizing reinforcement is to match the
aluminum (dry) 45
critical surface tension of the silylated glass surface to the
iron (dry) 46
surface tension of the polymer in its melt or uncured condi-
nylon 6/6 45-6
tion. This has been most helpful in resins with no obvious glass, soda-lime (dry) 47
functionality such as polyethylene and polystyrene. silica, fused 78
Immobilization of cellular organelles, including mitochondria, titanium dioxide (anatase) 91
chloroplasts, and microsomes, has been effected by treating ferric oxide 107
tin oxide 111
silica with alkylsilanes of C 8 or greater substitution.
Note: Critical surface tensions for silanes refer to treated surfaces.


FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
5
Gelest, Inc.


How does a Silane Modify a Surface? Hydrolytic Deposition of Silanes
Most of the widely used organosilanes have one organic
substituent and three hydrolyzable substituents. In the vast
majority of surface treatment applications, the alkoxy groups of
the trialkoxysilanes are hydrolyzed to form silanol-containing
species. Reaction of these silanes involves four steps. Initially,
hydrolysis of the three labile groups occurs. Condensation to
oligomers follows. The oligomers then hydrogen bond with
OH groups of the substrate. Finally, during drying or curing, a
covalent linkage is formed with the substrate with concomitant
loss of water. Although described sequentially, these reactions
can occur simultaneously after the initial hydrolysis step. At
the interface, there is usually only one bond from each silicon
of the organosilane to the substrate surface. The two remaining
silanol groups are present either in condensed or free form.
The R group remains available for covalent reaction or physi-
cal interaction with other phases.
Silanes can modify surfaces under anhydrous conditions
consistent with monolayer and vapor phase deposition require-
ments. Extended reaction times (4-12 hours) at elevated tem-
peratures (50°-120°C) are typical. Of the alkoxysilanes, only
methoxysilanes are effective without catalysis. The most effec-
tive silanes for vapor phase deposition are cyclic azasilanes.

Hydrolysis Considerations
Water for hydrolysis may come from several sources.
It may be added, it may be present on the substrate surface,
or it may come from the atmosphere. The degree of polymer-
ization of the silanes is determined by the amount of water
available and the organic substituent. If the silane is added to
water and has low solubility, a high degree of polymerization is
favored. Multiple organic substitution, particularly if phenyl or
B. Arkles, CHEMTECH, 7, 766, 1977
tertiary butyl groups are involved, favors formation of stable
monomeric silanols.
Anhydrous Deposition of Silanes
The thickness of a polysiloxane layer is also determined by
the concentration of the siloxane solution. Although a monolay- R
er is generally desired, multilayer adsorption results from solu- H3C Si CH3
tions customarily used. It has been calculated that deposition OCH 3
from a 0.25% silane solution onto glass could result in three to
+
eight molecular layers. These multilayers could be either inter-
connected through a loose network structure, or intermixed, OH
or both, and are, in fact, formed by most deposition techniques.
The orientation of functional groups is generally horizontal,
Δ
but not necessarily planar, on the surface of the substrate. - CH3OH
The formation of covalent bonds to the surface proceeds
with a certain amount of reversibility. As water is removed, R
generally by heating to 120°C for 30 to 90 minutes or evacuation H3C Si CH3
for 2 to 6 hours, bonds may form, break, and reform to relieve
O
internal stress.


PLEASE INQUIRE ABOUT BULK QUANTITIES
6
Gelest, Inc.


OH
H
Selecting A Silane for Surface Modification - O
H
Inorganic Substrate Perspective
O
O H
H
H
Factors influencing silane surface modification selection include: O
HO
OH
Concentration of surface hydroxyl groups
Type of surface hydroxyl groups
Hydrolytic Stability of the bond formed
Physical dimensions of the substrate or substrate features

Surface modification is maximized when silanes react with the
substrate surface and present the maximum number of accessible
sites with appropriate surface energies. An additional considera-
tion is the physical and chemical properties of the interphase
region. The interphase can promote or detract from total system
properties depending on its physical properties such as modulus or Water droplets on a (heptadecafluoro-1,1,2,2-tetrahy-
drodecyl)trimethoxysilane-treated silicon wafer
chemical properties such as water/hydroxyl content. exhibit high contact angles, indicative of the low
surface energy. Surfaces are both hydrophobic and
Hydroxyl-containing substrates vary widely in concentration resist wetting by hydrocarbon oils. (water droplets
and type of hydroxyl groups present. Freshly fused substrates contain dye for photographic purposes).
stored under neutral conditions have a minimum number of
hydroxyls. Hydrolytically derived oxides aged in moist air have Silane Effectiveness on Inorganics
significant amounts of physically adsorbed water which can
SUBSTRATES
interfere with coupling. Hydrogen bonded vicinal silanols react Silica
EXCELLENT Quartz
more readily with silane coupling agents, while isolated or free
Glass
hydroxyls react reluctantly. Aluminum (AlO(OH))
Silanes with three alkoxy groups are the usual starting point Alumino-silicates (e.g. clays)
Silicon
for substrate modification. These materials tend to deposit as poly-
Copper
GOOD
meric films, effecting total coverage and maximizing the introduc- Tin (SnO)
tion of organic functionality. They are the primary materials uti- Talc
Inorganic Oxides (e.g. Fe2O3, TiO2, Cr2O3)
lized in composites, adhesives, sealants, and coatings. Limitations Steel, Iron
intrinsic in the utilization of a polylayer deposition are significant Asbestos
Nickel
for nano-particles or nano-composites where the interphase dimen-
Zinc
sions generated by polylayer deposition may approach those of the Lead
SLIGHT Marble, Chalk (CaCO3)
substrate. Residual (non-condensed) hydroxyl groups from
Gypsum (CaSO4)
alkoxysilanes can also interfere in activity. Monoalkoxy-silanes Barytes (BaSO4)
provide a frequently used alternative for nano-featured substrates Graphite
POOR
Carbon Black
since deposition is limited to a monolayer.
If the hydrolytic stability of the oxane bond between the silane
and the substrate is poor or the application is an aggressive aque- Estimates for Silane Loading on Siliceous Fillers
ous environment, dipodal silanes often exhibit substantial perfor- Average Particle Size Amount of Silane
(minimum of monolayer coverage)
mance improvements. These materials form tighter networks and <1 micron 1.5%
1-10 microns 1.0%
may offer up to 105x greater hydrolysis resistance making them 10-20 microns 0.75%
particularly appropriate for primer applications. >100 microns 0.1% or less

FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
7
Gelest, Inc.
Hydrophobic Silane Surface Treatments
Factors which contribute to the ability of an organosilane to generate
a hydrophobic surface are its organic substitution, the extent of surface OH
coverage, residual unreacted groups (both from the silane and the surface) OH
and the distribution of the silane on the surface. OH
Aliphatic hydrocarbon substituents or fluorinated hydrocarbon sub- OH

stituents are the hydrophobic entities which enable silanes to induce sur- OH
face hydrophobicity. Beyond the simple attribute that in order to generate OH
OH
a hydrophobic surface the organic substitution of the silane must be non-
polar, more subtle distinctions can be made. The hydrophobic effect of OH
the organic substitution can be related to the free energy of transfer of OH
OH
hydrocarbon molecules from an aqueous phase to a homogeneous hydro-
carbon phase. For non-polar entities, van der Waals interactions are pre- complete coverage
dominant factors in interactions with water and such interactions compete
with hydrogen bonding in ordering of water molecules. Van der Waals
interactions for solid surfaces are primarily related to the instantaneous
polarizeability of the solid which is proportional to the dielectric constant
or permittivity at the primary UV absorption frequency and the refractive
index of the solid. Entities which present sterically closed structures that
minimize van der Waals contact are more hydrophobic than open struc-
tures that allow van der Waals contact. Thus, in comparison to polyethyl-
ene, polypropylene and polytetrafluoroethylene are more hydrophobic.
Similarly methyl-substituted alkylsilanes and fluorinated alkylsilanes pro-
vide better hydrophobic surface treatments than linear alkyl silanes.
Surfaces to be rendered hydrophobic usually are polar with a distrib- incomplete hydroxyl reaction
ution of hydrogen bonding sites. A successful hydrophobic coating must
eliminate or mitigate hydrogen bonding and shield polar surfaces from
interaction with water by creating a non-polar interphase. Hydroxyl
groups are the most common sites for hydrogen bonding. The hydrogens
of hydroxyl groups can be eliminated by oxane bond formation with an
organosilane. The effectiveness of a silane in reacting with hydroxyls
impacts hydrophobic behavior not only by eliminating the hydroxyls as
water adsorbing sites, but also by providing anchor points for the non-
polar organic substitution of the silane which shields the polar substrates
from interaction with water.
Strategies for silane surface treatment depend on the population of
hydroxyl groups and their accessibility for bonding. A simple conceptual few bonding opportunities
case is the reaction of organosilanes to form a monolayer. If all hydroxyl = (CH3)3Si = trimethylsilyl
groups are capped by the silanes and the surface is effectively shielded, a
Hypothetical
hydrophobic surface is achieved. Practically, not all of the hydroxyl
groups may react leaving residual sites for hydrogen bonding. Further, Trimethylsilylated
there may not be enough anchor points on the surface to allow the organ- Surfaces
ic substituents to effectively shield the substrate. Thus the substrate reac-
Pyrogenic silica has 4.4-
tive groups of the silane, the conditions of deposition, the ability of the 4.6 OH/nm2. Typically
silane to form monomeric or polymeric layers and the nature of the organ- less than 50% are reacted.
ic substitution all play a role in rendering a surface hydrophobic. The Other substrates have fewer
minimum requirements of hydrophobicity and economic restrictions for opportunities for reaction.
different applications further complicate selection.



PLEASE INQUIRE ABOUT BULK QUANTITIES
8
Gelest, Inc.


Hydrophobicity is frequently associated with
Hydrophobicity vs Water Permeability
oleophilicity, the affinity of a substance for oils, since non-
Although silane and silicone derived coatings are in
polar organic substitution is often hydrocarbon in nature
general the most hydrophobic, they maintain a high
and shares structural similarities with many oils. The degree of permeability to water vapor. This allows
hydrophobic and oleophilic effect can be differentiated and coatings to breathe and reduce deterioration at the
coating interface associated with entrapped water.
controlled. At critical surface tensions of 20-30, surfaces are
Since ions are not transported through non-polar
wetted by hydrocarbon oils and are water repellent. At criti-
silane and silicone coatings, they offer protection to
cal surface tensions below 20, hydrocarbon oils no longer composite structures ranging from pigmented coat-
spread and the surfaces are both hydrophobic and oleophobic. ings to rebar reinforced concrete.
The most oleophobic silane surface treatments have fluori-
nated long-chain alkyl silanes and methylated medium chain
alkyl silanes.
Superhydrophobic
Superhydrophobic surfaces are those surfaces that pre- Surface:
sent apparent contact angles that exceed the theoretical limit
Cassie State
for smooth surfaces, i.e. >120°. The most common examples
of super-hydrophobicity are associated with surfaces that are
rough on a sub-micron scale and contact angle measurements
are composites of solid surface asperities and air. This super-
hydrophobic state is called the Cassie state and is the mech-
anism for the “lotus-effect�.




Automotive side windows are treated with fluoroalkylsilanes to provide
self-cleaning properties. Water beads remove soil as they are blown over
the glass substrate during acceleration.




FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
9
Gelest, Inc.

Hydrophilic Silane Surface Treatments
The vast majority of surfaces are hydrophilic and Anti-fog coatings
water is omnipresent in the environment, yet the precise applied to one side
nature of interaction of water with specific surfaces is of a visor can be
prepared from
largely unknown. Water adsorption may be uniform or in combinations of
isolated patches. It may be driven by a number of differ- polyalkylene oxide
ent physical and chemical processes. The adsorption of functional silanes
water by a surface may be assisted or retarded by other and film-forming
hydrophilic
adsorbents present in the environment. The purpose of silanes.
applying a hydrophilic surface treatment is to control the
nature and extent of interaction of water with a surface.
The controlled interaction of water with substrates
can offer various degrees of hydrophilicity ranging from Heats of Immersion in Water, mJ/m2
physi-sorption to chemi-sorption and centers for ion- titanium dioxide 225-250
interaction. The utility of hydrophilic surfaces varies talc 220-260
aminopropyltriethoxysilane* 230-270
widely. Anti-fog coatings exploit high surface energies
silicon dioxide 210-225
to flatten water droplets rather than allowing them to glass 200-205
vinyltris(methoxyethoxy)silane* 110-190
form light-scattering droplets. In biological systems
mercaptopropyltrimethoxysilane* 80-170
hydrophilic surfaces can reduce nonspecific bonding of graphite 32-35
proteins. Hydrophilic coatings with hydrogen bonding polytetrafluoroethylene 24-25
sites allow formation of tightly adherent layers of water
*Data for silane treated surfaces in this table is primarily
with high lubricity in biological systems and the ability from B. Marciniec et al, Colloid & Polymer Science, 261,
to resist oil adsorption in anti-graffiti coatings. They 1435, 1983 recalculated for surface area.

can also be used to disperse particles in aqueous coat-
ings and oil-in-water emulsions. Hydrophilic coatings with ionic sites form antistatic coatings, dye
receptive surfaces and can generate conductive or electrophoretic pathways. Thick films can behave
as polymeric electrolytes in battery and ion conduction applications.
In general, surfaces become more hydrophilic in the series: non-polar < polar, no hydrogen-bonding
< polar, hydrogen-bonding < hydroxylic, < ionic. The number of sites and the structure and density of
the interphase area also have significant influence on hydrophilicity.
Much of the discussion of hydrophobicity centers around high contact angles and their mea-
surement. As a corollary, low or 0° contact angles of water are associated with hydrophilicity, but
practically the collection of consistent data is more difficult. Discriminating between surfaces with
a 0° contact angle is impossible. The use of heat of immersion is a method that generates more con-
sistent data for solid surfaces, provided they do not react with, dissolve or absorb the tested liquid.
Another important consideraton is whether water adsorbed is “free� or “bound.� Free water is water
that is readily desorbed under conditions of less than 100% relative humidity. If water remains
bound to a substrate under conditions of less than 100% relative humidity, the surface is considered
hygroscopic. Another description of hygroscopic water is a boundary layer of water adsorbed on a
surface less than 200nm thick that cannot be removed without heating. A measure of the relative
hygroscopic nature of surfaces is given by the water activity, the ratio of the fugacity, or escaping
tendency, of water from a surface compared to the fugacity of pure water.
The hydrophilicity of a surface as measured or determined by contact angle is subject to inter-
ference by loosely bound oils and other contaminants. Heats of immersion and water activity
measurements are less subject to this interference. Measurements of silane-modified surfaces
demonstrate true modification of the intrinsic surface properties of substrates. If the immobilized
hydrophilic layer is in fact a thin hydrogel film, then swelling ratios at equilibrium water absorbtion
can provide useful comparative data.


PLEASE INQUIRE ABOUT BULK QUANTITIES
10
Gelest, Inc.

Hydrophilic Silane Surface Treatments (continued)
Controlling hydrophilic interaction with silane surface treatments is accomplished
by the selection of a silane with the appropriate hydrophilic substitution. The classes of substi-
tution are:
Aortic stents are coated
� Polar, Non-Hydrogen Bonding to promote hydrophilicity,
� Polar, Hydrogen-Bonding coupling to polymers and
� Hydroxylic drug delivery systems.
� Ionic-Charged
The selection of the class of hydrophilic subsitution is dependent on the application. If it is
sufficient for water to spread evenly over a surface to form a thin film that washes away and dries
off quickly without leaving 'drying spots', then a polar aprotic silane is preferred. If a coating is
desired that reduces non-specific binding of proteins or other biofoulants, then a polar hydrogen-
bonding material such as a polyether functional silane is preferred. A very different application
for a polar non-hydroxylic materials is thin film proton conduction electrolytes. Lubricious
coatings are usually hydroxylic since they require a restrained adsorbed phase of water.
Antistatic coatings are usually charged or charge-inducible as are ion-conductive coatings used
in the construction of thin-film batteries. A combination of hydrophilicity and hydrophobicity
may be a requirement in coatings which are used as primers or in selective adsorption applica-
tions such as chromatography. Formulation limitations may require that hydrophilicity is latent
and becomes unmasked after application.
Factors affecting the intrinsic hydrolytic stability of silane treated surfaces are magnified
when the water is drawn directly into the interface. Even pure silicon dioxide is
ultimately soluble in water (at a level of 2-6ppm), but the kinetics, low concentration for satura-
tion and phase separation, make this a negligible consideration in most applications. The equi-
librium constant for the rupture of a Si-O-Si bond by water to two Si-OH bonds is estimated at
10 -3. Since at minimum 3 Si-O-Si bonds must be simultaneously broken under equilibrium con-
ditions to dissociate an organosilane from a surface, in hydrophobic environments the long-term
stability is a minor consideration. Depending on the conditions of exposure to water of a
hydrophilic coating, the long-term stability can be an important consideration. Selection of a
dipodal, polypodal or other network forming silane as the basis for inducing hydrophilicity or as
a component in the hydrophilic surface treatment is often obligatory.

Range of Water Interaction with Surfaces
interaction description surface measurement -
example parameter
low superhydrophobic contact angle
oleophobic fluorocarbon
lipophobic
oleophilic water-sliding angle
lipophilic hydrocarbon critical surface tension
hydrophobic
moderate polar polymer heat of immersion
hydrophilic oxide surface
hygroscopic polyhydroxylic water activity
strong hydrogel film equilibrium water absorption
swell

FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
11
Gelest, Inc.



Reacting with the Substrate
Bond Dissociation Energies
Leaving Groups
The reaction of an organofunctional silane with a surface Bond Dissociation Energy
(kcal/mole)
bearing hydroxyl group results in a substitution reaction at
silicon and the formation of the silylated surface where the Me3Si-NMe2 98
silicon is covalently attached to the surface via an oxygen Me3Si-N(SiMe3)2 109
linkage. This connection may be formed directly or in the Me3Si-Cl 117
presence of water through a reactive silanol intermediate. In Me3Si-OMe 123
general the reactivity of hydroxylated surfaces with organo- Me3Si-OEt 122
functional silanes decreases in the order: Si-NR2 > Si-Cl > Me3Si-OSiMe3 136
Si-NH-Si > Si-O2CCH3 > Si-OCH3 > Si-OCH2CH3. An
analysis of the relevant bond energies indicates that the for-
mation of the Si-O-surface bond is the driving force for the
reaction under dry and aprotic conditions. Secondary factors Common Leaving Groups
contributing to the reactivity of organofunctional silanes with
Type Advantage Disadvantage
a surface are the volatility of the byproducts, the ability of the
dimethylamine reactive, toxic
byproduct to hydrogen bond with the hydroxyls on the sur- volatile byproduct
face, the ability of the byproduct to catalyze further reactions,
hydrogen chloride reactive, corrosive
e.g. HCl or acetic acid, and the steric bulk of the groups on
volatile byproduct
the silicon atom.
Although they are not the most reactive organosilanes, silazane (NH3) volatile limited availability
the methoxy and ethoxysilanes are the most widely used methoxy moderate reactivity, moderate toxicity
organofunctional silanes for surface modification. The rea- neutral byproduct
sons for this include the fact that they are easily handled and
ethoxy low toxicity lower reactivity
the alcohol byproducts are non-corrosive and volatile. The
methoxysilanes are capable of reacting with substrates under
dry, aprotic conditions, while the less reactive ethoxysilanes
require catalysis for suitable reactivity. The low toxicity of
ethanol as a byproduct of the reaction favors the ethoxysi-
lanes in many commercial applications. The vast majority
of organofunctional silane surface treatments are performed
under conditions in which water is a part of the reaction
medium, either directly added or contributed by adsorbed
water on the substrate or atmospheric moisture.




PLEASE INQUIRE ABOUT BULK QUANTITIES
12
Gelest, Inc.



Special Topics
Dipodal Silanes
Functional dipodal silanes and combinations of non-
functional dipodal silanes with functional silanes have sig-
nificant impact on substrate bonding, hydrolytic stability
and mechanical strength of many composites systems. Multilayer printed circuit boards use dipodal
They possess enabling activity in many coatings, particu- silanes to maintain the integrity of the bond
between metal and resins by reducing
larly primer systems and aqueous immersion applications. interfacial water adsorption.
The effect is thought to be a result of both the increased
crosslink density of the interphase and a consequence of
the fact that the resistance to hydrolysis of dipodal materi-
als (with the ability to form six bonds to a substrate) is
estimated at close to 100,000 times greater than conven-
tional coupling agents (with the ability to form only three
bonds to a substrate).
Both because dipodal silanes may not have functional
groups identical to conventional coupling agents or
because of economic considerations, conventional cou- Hydrophobic Dipodal Silanes
pling agents are frequently used in combination with a
(C2H5O)3Si CH2CH2 Si(OC2H5)3
non-functional dipodal silanes. In a typical application a SIB1817.0

dipodal material such as bis(triethoxysilyl)ethane
(C2H5O)3Si CH2CH2CH2CH2CH2CH2CH2CH2 Si(OC2H5)3
(SIB1817.0) is combined at a 1:5 to 1:10 ratio with a tra-
SIB1824.0
ditional coupling agent. It is then processed in the same
Si(OCH 3)3
(CH3O)3Si CH2CH2
way as the traditional silane coupling agent. CH2CH2 Si(OCH 3)3 Si(OCH 3)3

Effect of dipodal -SiCH2CH2Si- on the bond strength of SIB1829.0
SIB1831.0

a crosslinkable ethylene-vinyl acetate primer formulation

Hydrophilic Dipodal Silanes
Wet adhesion to metals (N/cm)
Primer on metal
10% in i-PrOH Titanium Cold-rolled steel H H
H
N CH2CH2 N
N
CH2 CH2
No silane Nil Nil CH2 CH2
CH2 CH2
Methacryloxypropylsilane 0.25 7.0 CH2 CH2
Methacryloxypropylsilane + 10% dipodal 10.75 28.0 CH2 CH2
CH2 CH2
(CH3O)3Si Si(OCH 3)3
(cohesive failure) (CH3O)3Si Si(OCH 3)3
SIB1834.0
SIB1833.0
90º peel strength after 2 h in 80ºC water.
(CH3O)3SiCH2CH2CH2 O O
SS
NCH 2CH2OH
(C2H5O)3Si CO
CH2 2CH2O)CHC
(CH
n2 NH
HN
H
P. Pape et al, in Silanes and Other Coupling Agents, ed. K. Mittal, 1992, VSP, p105
C C CH2 CH2
CH2
CH2
CH2
CH2
CH2 CH2
H
CH2
Si(OC H ) CH2 CH2
CH2
2 53
NCH 2CH2OH
Hydrophobic coatings applied to antennas Si(OC2H5)3 2H5)3
Si(OC
(C2H5O)3Si
(C2H5O)3Si
(CH3O)3SiCH2CH2CH2
inhibit the formation of adsorbed water
layers which become dielectric layers that SB1820..0 SIB1824.6
SIB1142.0 SIB1824.82
absorbing signals and cause high losses.
If the water is in beads, the energy will be
slightly diffracted because the water droplets
have dimensions much less than a wave-
length at these frequencies.



(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
13
Gelest, Inc.

Linker Length
An important factor in controlling the effec-
tiveness and properties of a coupled system is the
linker between the organic functionality and the
silicon atom. The linker length imposes a number
of physical property and reactivity limitations.
The desirability of maintaining the reactive cen-
ters close to the substrate are most important in sen-
sor applications, in heterogeneous catalysis, fluor-
escent materials and composite systems in which
Effect of linker length on the separation of
the interfacing components are closely matched in
aromatic hydrocarbons
modulus and coefficient of thermal expansion.
On the other hand, inorganic surfaces can impose
enormous steric constraints on the accessibility of
organic functional groups in close proximity. If
the linker length is long the functional group has
greater mobility and can extend further from the
inorganic substrate. This has important conse-
quences if the functional group is expected to
react with a single component in a multi-compo-
nent organic or aqueous phases found in homoge-
neous and phase transfer catalysis, biological
diagnostics or liquid chromatography. Extended
linker length is also important in oriented applica-
tions such as self-assembled monolayers (SAMs).
The typical linker length is three carbon atoms, a
consequence of the fact that the propyl group is syn-
thetically accessible and has good thermal stability.
T. Den et al, in “Silanes, Surfaces, Interfaces� D. Leyden ed., 1986 p403.


Silanes with short linker length Silanes with extended linker length
OCH 3
CH3 Cl
CH3CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2 Si OCH 3
SIT8572.6
H3C Si O Si Cl OCH 3
SIH5925.0
CH3 Cl
Cl
OCH 2CH3
N C CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2 Si Cl
N C CH2CH2 Si OCH 2CH3 SIC2445.0 Cl
SIC2456.3
OCH 2CH3

Cl
OC2H5
CH2CH2CH2CH2 Si Cl
SIH6175.0
HO CH2 Si OC2H5
Cl
OC2H5 SIP6724.9
O OCH 3 Cl
CH3OCH 2CH2O
CH3COCH 2Si OCH 3 CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2 Si Cl
SIA0055.0
Cl
OCH 3
SIM6491.5


PLEASE INQUIRE ABOUT BULK QUANTITIES
14
Gelest, Inc.

Partition, Orientation and Normal Phase HPLC of Carboxylic Acids with a
C23-Silane Bonded Phase
Self-Assembly in Bonded Phases
Chromatography
Octadecyl, cyanopropyl and branched tricocyl silanes
provide bonded phases for liquid chromatography.
Reverse-phase thin-layer chromatography can be accom-
plished by treating plates with dodecyltrichlorosilane.

Liquid Crystal Displays
The interphase can also impose orientation of the bulk
phase. In liquid crystal displays, clarity and permanence H3C Si CH3
Cl
of image are enhanced if the display can be oriented paral-
lel or perpendicular to the substrate. The use of surfaces
treated with octadecyl(3-(trimethoxysilyl)propyl) ammoni-
um chloride (perpendicular) or methylaminopropyl-
trimethoxysilane (parallel) has eliminated micromachining
operations The oriented crystalline domains often
observed in reinforced nylons have also been attributed to
Orientation effects of silanes for passive LCDs
orientation effects of the silane in the interphase.
OCTADECYLDIMETHYL(3-TRIMETHOXYSILYLPROPYL)AMMONIUM
CHLORIDE (SIO6620.0)
Self-Assembled Monolayers (SAMs)
A Self-Assembled Monolayer (SAM) is a one mole-
cule thick layer of material that bonds to a surface in an
ordered way as a result of physical or chemical forces dur-
ing a deposition process. Silanes can form SAMs by solu-
tion or vapor phase deposition processes. Most common-
ly, chlorosilanes or alkoxysilanes are used and once depo-
sition occurs a chemical (oxane) bond forms with the sur-
face rendering a permanent modification of the substrate.
Applications for SAMs include micro-contact printing,
N-METHYLAMINOPROPYLTRIMETHOXYSILANE (SIM6500.0)
soft lithography, dip-pen nanolithography, anti-stiction
coatings and orientation layers involved in nanofabrication
of MEMs, fluidic microassemblies, semiconductor sensors
and memory devices.
Common long chain alkyl silanes used in the forma-
tion of SAMs are simple hydrocarbon, fluoroalkyl and
end-group substituted silanes. Silanes with one
hydrolyzeable group maintain interphase structure after
deposition by forming a single oxane bond with the sub- F. Kahn., Appl. Phys. Lett. 22, 386, 1973
strate. Silanes with three hydrolyzeable groups form
Micro-Contact Printing Using SAMs
siloxane (silsesquioxane) polymers after
deposition, bonding both with each other as
spin casting of sol-gel precursor
well as the substrate. For non-oxide metal and soft bake
substrates, silyl hydrides may be used, react- PDMS

ing with the substrate by a dehydrogenative “inked� with solution amorphous oxide
of C18-Silane in hexane
coupling. Substrate Substrate
The perpendicular orientation of silanes microcontact printing of C18-Silane
polishing and crystallization
with C10 or greater length can be utilized in
micro-contact printing and other soft lithog- SAMs of C18-Silane crystallization oxide
raphy methods. Here the silane may effect a Substrate (2-3nm)
Substrate
simple differential adsorption, or if function-
alized have a direct sensor effect.

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
15
Gelest, Inc.



Modification of
Metal Substrates
The optimum performance of silanes is associated
with siliceous substrates. While the use of silanes has
been extended to metal substrates, both the effective-
ness and strategies for bonding to these less-reactive
substrates vary. Four approaches of bonding to metals
have been used with differing degrees of success. In
all cases, selecting a dipodal or polymeric silane is
preferable to a conventional trialkoxy silane. Octysilane adsorbed on titanium figure courtesy of
M. Banaszak-Holl
Metals that form hydrolytically stable surface
oxides, e.g. aluminum, tin, titanium. These oxidized Metals that form stable hydrides, e.g. titanium,
surfaces tend to have sufficient hydroxyl functionality zirconium, nickel. In a significant departure from tra-
to allow coupling under the same conditions applied to ditional silane coupling agent chemistry, the ability of
the siliceous substrates discussed earlier. certain metals to form so-called amorphous alloys with
hydrogen is exploited in an analogous chemistry in
Metals that form hydrolytically or mechanically which hydride functional silanes adsorb and then coor-
unstable surface oxides, e.g. iron, copper, zinc. dinate with the surface of the metal. Most silanes of
These oxidized surfaces tend to dissolve in water lead- this class possess only simple hydrocarbon substitution
ing to progressive corrosion of the substrate or form a such as octylsilane. However they do offer organic
passivating oxide layer without mechanical strength. compatibility and serve to markedly change wet-out
The successful strategies for coupling to these sub- of the substrate. Both hydride functional silanes and
strates typically involves two or more silanes. One treated metal substrates will liberate hydrogen in the
silane is a chelating agent such as a diamine, presence of base or with certain precious metals such
polyamine or polycarboxylic acid. A second silane is as platinum and associated precautions must be taken.
H
selected which has a reactivity with the organic com- (see p72.)
ponent and reacts with the first silane by co-condensa- H2C CH(CH 2)8CH2Si H
tion. If a functional dipodal or polymeric silane is not H
SIU9048.0
selected, 10-20% of a non-functional dipodal silane
typically improves bond strength. Coupling Agents for Metals*
Metal Class Screening Candidates
Metals that do not readily form oxides, e.g.
nickel, gold and other precious metals. Bonding to
Copper Amine SSP-060 SIT8398.0
these substrates requires coordinative bonding, typical-
ly a phosphine, sulfur (mercapto), or amine functional
Gold Sulfur SIT7908.0 SIP6926.2
silane. A second silane is selected which has a reac-
Phosphorus SID4558.0 SIB1091.0
tivity with the organic component. If a functional
dipodal or polymeric silane is not selected, 10-20%
Iron Amine SIB1834.0 WSA-7011
of a non-functional dipodal silane typically improves
Sulfur SIB1824.6 SIM6476.0
bond strength.
Tin Amine SIB1835.5

Titanium Epoxy SIG5840.0 SIE6668.0
OCH 3
Hydride SIU9048.0
CH2CH2SCH 2CH2CH2Si OCH 3
N
Zinc Amine SSP-060 SIT8398.0
OCH 3
Carboxylate SIT8402.0 SIT8192.6
SIP6926.2
*These coupling agents are almost always used in conjunction
with a second silane with organic reactivity or a dipodal silane.

PLEASE INQUIRE ABOUT BULK QUANTITIES
16
Gelest, Inc.
-+
O Na
OH
Difficult Substrates - +
O Ca
Silane coupling agents are generally recommended for applica-
tions in which an inorganic surface has hydroxyl groups and the Substrates with low concentrations of non-hydrogen bonded
hydroxyl groups can be converted to stable oxane bonds by reac- hydroxyl groups, high concentrations of calcium, alkali metals
or phosphates pose challenges for silane coupling agents.
tion with the silane. Substrates such as calcium carbonate, copper
and ferrous alloys, and high phosphate and sodium glasses are not Removing Surface Impurities
recommended substrates for silane coupling agents. In cases Eliminating non-bonding metal ions such as sodium,
where a more appropriate technology is not available a number of potassium and calcium from the surface of sub-
strates can be critical for stable bonds. Substrate
strategies have been devised which exploit the organic functionali-
selection can be essential. Colloidal silicas derived
ty, film-forming and crosslinking properties of silane coupling from tetraethoxysilane or ammonia sols perform far
better than those derived from sodium sols. Bulk
agents as the primary mechanism for substrate bonding in place of
glass tends to concentrate impurities on the surface
bonding through the silicon atom. These approaches frequently during fabrication. Although sodium concentrations
derived from bulk analysis may seem acceptable, the
involve two or more coupling agents.
surface concentration is frequently orders of magni-
Calcium carbonate fillers and marble substrates do not form tude higher. Surface impurities may be reduced by
stable bonds with silane coupling agents. Applications of mixed immersion in 5% hydrochloric acid for 4 hours, fol-
lowed by a deionized water rinse, and then immer-
silane systems containing a dipodal silane or tetraethoxysilane in sion in deionized water overnight followed by drying.
combination with an organofunctional silane frequently increases Oxides with high isoelectric points can adsorb car-
bon dioxide, forming carbonates. These can usually
adhesion. The adhesive mechanism is thought to be due to the low
be removed by a high temperature vacuum bake.
molecular weight and low surface energy of the silanes which
allows them initially to spread to thin films and penetrate porous
Increasing Hydroxyl Concentration
structures followed by the crosslinking which results in the forma-
Hydroxyl functionalization of bulk silica and glass may
tion of a silica-rich encapsulating network. The silica-rich encap-
be increased by immersion in a 1:1 mixture of 50%
sulating network is then susceptible to coupling chemistry compa- aqueous sulfuric acid : 30% hydrogen peroxide for 30
minutes followed by rinses in D.I. water and methanol
rable to siliceous substrates. Marble and calciferous substrates can
and then air drying. Alternately, if sodium ion contamina-
also benefit from the inclusion of anhydride-functional silanes tion is not critical, boiling with 5% aqueous sodium per-
which, under reaction conditions, form dicarboxylates that can oxodisulfate followed by acetone rinse is recommended1.
1. K. Shirai et al, J. Biomed. Mater. Res. 53, 204, 2000.
form salts with calcium ions.
Metals and many metal oxides can strongly adsorb silanes if a
chelating functionality such as diamine or dicarboxylate is present. Catalyzing Reactions in Water-Free Environments
A second organofunctional silane with reactivity appropriate to the Hydroxyl groups without hydrogen bonding react slowly
with methoxy silanes at room temperature. Ethoxy silanes
organic component must be present. Precious metals such as gold are essentially non-reactive. The methods for enhancing
and rhodium form weak coordination bonds with phosphine and reactivity include transesterification catalysts and agents
which increase the acidity of hydroxyl groups on the sub-
mercaptan functional silanes. strate by hydrogen bonding. Transesterification catalysts
High phosphate and sodium content glasses are frequently the include tin compounds such as dibutyldiacetoxytin and
titanates such as titanium isopropoxide. Incorporation of
most frustrating substrates. The primary inorganic constituent is
transesterification catalysts at 2-3 weight % of the silane
silica and would be expected to react readily with silane coupling effectively promotes reaction and deposition in many
instances. Alternatively, amines can be premixed with sol-
agents. However alkali metals and phosphates not only do not
vents at 0.01-0.5 weight % based on substrate prior or
form hydrolytically stable bonds with silicon, but, even worse, cat- concurrent to silane addition. Volatile primary amines such
alyze the rupture and redistribution of silicon-oxygen bonds. The as butylamine can be used, but are not as effective as ter-
tiary amines such as benzyldimethylamine or diamines
first step in coupling with these substrates is the removal of ions such as ethylenediamine. The more effective amines,
from the surface by extraction with deionized water. Hydrophobic however, are more difficult to remove after reaction1.
dipodal or multipodal silanes are usually used in combination with 1. S. Kanan et al, Langmuir, 18, 6623, 2002.

organofunctional silanes. In some cases polymeric silanes with Hydroxylation by Water Plasma & Steam Oxidation
multiple sites for interaction with the substrate are used. Some of Various metals and metal oxides including silicon and
these, such as the polyethylenimine functional silanes can couple silicon dioxide can achieve high surface concentrations
of hydroxyl groups after exposure to H2O/O2 in high
to high sodium glasses in an aqueous environment.
energy environments including steam at 1050° and
water plasma1.
1. N. Alcanter et al, in “Fundamental & Applied Aspects of Chemically
Modified Surfaces� ed. J. Blitz et al, 1999, Roy. Soc. Chem., p212.


17
Gelest, Inc.

Applying Silanes
Deposition from aqueous alcohol solutions is the most facile method for Fig. 1 Reactor for slurry
preparing silylated surfaces. A 95% ethanol-5% water solution is adjusted to treatment of powders.
Separate filtration and
pH 4.5-5.5 with acetic acid. Silane is added with stirring to yield a 2% final
concentration. Five minutes should be allowed for hydrolysis and silanol for- drying steps are required.
mation. Large objects, e.g. glass plates, are dipped into the solution, agitated
gently, and removed after 1-2 minutes. They are rinsed free of excess materials by dipping briefly in
ethanol. Particles, e.g. fillers and supports, are silylated by stirring them in solution for 2-3 minutes
and then decanting the solution. The particles are usually rinsed twice briefly with ethanol. Cure of
the silane layer is for 5-10 mins at 110°C or 24 hours at room temperature (<60% relative humidity).

Deposition from aqueous solution is employed for most commercial fiberglass systems. The
alkoxysilane is dissolved at 0.5-2.0% concentration in water. For less soluble silanes, 0.1% of a non-
ionic surfactant is added prior to the silane and an emulsion rather than a solution is prepared. The
solution is adjusted to pH 5.5 with acetic acid. The solution is either sprayed onto the substrate or
employed as a dip bath. Cure is at 110-120°C for 20-30 minutes.
Stability of aqueous silane solutions varies from 2-12 hours for the simple alkyl silanes.
Poor solubility parameters limit the use of long chain alkyl and aromatic silanes by this method.
Distilled water is not necessary, but water containing fluoride ions must be avoided.

Bulk deposition onto powders, e.g. filler treatment, is usually
accomplished by a spray-on method. It assumes that the total Fig. 2 Vacuum tumble
amount of silane necessary is known and that sufficient adsorbed dryers can be used for
moisture is present on the filler to cause hydrolysis of the silane. slurry treatment of
The silane is prepared as a 25% solution in alcohol. The powder is powders.
placed in a high intensity solid mixer, e.g. twin cone mixer with
intensifier. The methods are most effective. If the filler is dried in trays, care must be taken to
avoid wicking or skinning of the top layer of treated material by adjusting heat and air flow.

Integral blend methods are used in composite formulations. In this method the silane is
used as a simple additive. Composites can be prepared by the addition of alkoxysilanes to
dry-blends of polymer and filler prior to compounding. Generally 0.2 to 1.0 weight percent of
silane (of the total mix) is dispersed by spraying the silane in an alcohol carrier onto a pre-
blend. The addition of the silane to non-dispersed filler is not desirable in this technique since
it can lead to agglomeration. The mix is dry-blended briefly and then melt compounded.
Vacuum devolatization of byproducts of silane reaction during melt compounding is neces-
sary to achieve optimum properties. Properties are sometimes enhanced by adding 0.5-1.0%
of tetrabutyl titanate or benzyldimethylamine to the silane prior to dispersal.

Anhydrous liquid phase deposition of chlorosilanes, methoxysilanes, aminosilanes and
cyclic azasilanes is preferred for small particles and nano-featured substrates. Toluene, tetrahy-
drofuran or hydrocarbon solutions are prepared containing 5% silane. The mixture is refluxed
for 12-24 hours with the substrate to be treated. It is washed with the solvent. The solvent is
then removed by air or explosion-proof oven drying. No further cure is necessary. This reac-
tion involves a direct nucleophilic displacement of the silane chlorines by the surface silanol.
If monolayer deposition is desired, substrates should be predried at 150°C for 4 hours. Bulk
deposition results if adsorbed water is present on the substrate. This method is cumbersome
for large scale preparations and rigorous controls must be established to ensure reproducible
results. More reproducible coverage is obtained with monochlorosilanes.

Chlorosilanes can also be deposited from alcohol solution. Anhydrous alcohols, particularly
ethanol or isopropanol are preferred. The chlorosilane is added to the alcohol to yield a 2-5%
solution. The chlorosilane reacts with the alcohol producing an alkoxysilane and HCl. Progress
Fig. 3 Twin-cone blenders with
of the reaction is observed by halt of HCl evolution. Mild warming of the solution (30-40°C)
intensive mixing bars are used
promotes completion of the reaction. Part of the HCl reacts with the alcohol to produce small
for bulk deposition of silanes
quantities of alkyl halide and water. The water causes formation of silanols from alkoxysilanes.
onto powders.
The silanols condense on the substrate. Treated substrates are cured for 5-10 mins. at 110°C or
allowed to stand 24 hours at room temperature.
PLEASE INQUIRE ABOUT BULK QUANTITIES
18
Gelest, Inc.
Figure 4.
Applying Silanes Apparatus for vapor
phase silylation.

Vapor Phase Deposition
Silanes can be applied to substrates under dry aprotic conditions
by chemical vapor deposition methods. These methods favor mono-
layer deposition. Although under proper conditions almost all silanes
can be applied to substrates in the vapor phase, those with vapor pres-
sures >5 torr at 100°C have achieved the greatest number of commer-
cial applications. In closed chamber designs, substrates are supported
above or adjacent to a silane reservoir and the reservoir is heated to
sufficient temperature to achieve 5mm vapor pressure. Alternatively,
vacuum can be applied until silane evaporation is observed. In still
another variation the silane can be prepared as a solution in toluene,
and the toluene brought to reflux allowing sufficient silane to enter
the vapor phase through partial pressure contribution. In general,
substrate temperature should be maintained above 50° and below
120° to promote reaction. Cyclic azasilanes deposit the quickest- Figure 5.
usually less than 5 minutes. Amine functional silanes usually deposit Spin-coater
for deposition
rapidly (within 30 minutes) without a catalyst. The reaction of other
on wafers.
silanes requires extended reaction times, usually 4-24 hours. The
reaction can be promoted by addition of catalytic amounts of amines.

Spin-On
Spin-On applications can be made under hydrolytic conditions
which favor maximum functionalization and polylayer deposition or
dry conditions which favor monolayer deposition. For hydrolytic
deposition 2-5% solutions are prepared (see deposition from aqueous
alcohol). Spin speed is low, typically 500 rpm. Following spin-depo-
Figure 6.
sition a hold period of 3-15 minutes is required before rinse solvent.
Spray
Dry deposition employs solvent solutions such as methoxypropanol
application
or ethyleneglycol monoacetate (EGMA). Aprotic systems utilize of silanes
toluene or THF. Silane solutions are applied at low speed under a on large
nitrogen purge. If strict monolayer deposition is preferred, the sub- structures.
strate should be heated to 50°. In some protocols, limited polylayer
formation is induced by spinning under an atmospheric ambient with
55% relative humidity.

Spray application
Formulations for spray applications vary widely depending on
end-use. They involve alcohol solutions and continuously hydrolyzed
aqueous solutions employed in architectural and masonry applica- Figure 7.
tions. The continuous hydrolysis is effected by feeding mixtures of Spray &
silane containing an acid catalyst such as acetic acid into a water contact roller
application of
stream by means of a venturi (aspirator). Stable aqueous solutions
silanes on
(see water-borne silanes), mixtures of silanes with limited stability
fiberglass.
(4-8 hours) and emulsions are utilized in textile and fiberglass appli-
cations. Complex mixtures with polyvinyl acetates or polyesters
enter into the latter applications as sizing formulations.


(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
19
Gelest, Inc.

Hydrophobic Silane Selection Guide
Hydrophobic silanes employed in surface moodification form the following major categories:

Methyl-Silanes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Linear Alkyl-Silanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Branched Alkyl-Silanes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Aromatic-Silanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Fluorinated Alkyl-Silanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Dialkyl-Silanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28


Methyl-Silanes very hydrophobic, hydrolysates stable to 425°C, acceptable performance to 600°C reported, volatile
3 Hydrolyzeable Groups
Hydrolyzeable Groups Product Code Product Name
SIM6520.0 methyltrichlorosilane
chloro
methoxy SIM6560.0 methyltrimethoxysilane
ethoxy SIM6555.0 methyltriethoxysilane
propoxy SIM6579.0 methyltri-n-propoxysilane
methoxyalkoxy SIM6585.0 methyltris(methoxyethoxy)silane
acetoxy SIM6519.0 methyltriacetoxysilane
dimethylamine SIT8712.0 tris(dimethylamino)methylsilane
other amine SIT8710.0 tris(cyclohexylamino)methylsilane
silazane (NH)
oxime SIM6590.0 methyltris(methylethylketoximino)silane



Methyl-SiloxanylSilanes
3 Hydrolyzeable Groups
Hydrolyzeable Groups Product Code Product Name
2 silicon atom compounds
chloro SIT8572.6 trimethylsiloxytrichlorosilane
ethoxy
acetoxy
3 silicon atom compounds
chloro
methoxy
ethoxy
chloro
oligomeric polysiloxanes
chloro
methoxy
ethoxy
amine/silazane
silanol
selected specialties


SID4236.0 dimethyltetramethoxydisiloxane




PLEASE INQUIRE ABOUT BULK QUANTITIES
20
Gelest, Inc.



Fumed silica treated with
hexamethyldisilazane
floats on water.




2 Hydrolyzeable Groups 1 Hydrolyzeable Group
Product Code Product Name Product Code Product Name
SID4120.0 dimethyldichlorosilane SIT8510.0 trimethylchlorosilane
SID4123.0 dimethyldimethoxysilane SIT8566.0 trimethylmethoxysilane
SID4121.0 dimethyldiethoxysilane SIT8515.0 trimethylethoxysilane
SIT8568.0 trimethyl-n-propoxysilane
SIM6492.8 methoxypropoxytrimethylsilane
SID4076.0 dimethyldiacetoxysilane SIA0110.0 acetoxytrimethylsilane
SIB1072.0 bis(dimethylamino)dimethylsilane SID3605.0 dimethylaminotrimethylsilane
SIB1068.0 bis(diethylamino)dimethylsilane SID3398.0 diethylaminotrimethylsilane
SIH6102.0 hexamethylcyclotrisilazane SIH6110.0 hexamethyldisilazane




2 Hydrolyzeable Groups 1 Hydrolyzeable Group
Product Code Product Name Product Code Product Name


SID3372.0 dichlorotetramethyldisiloxane
SIT7534.0 tetramethyldiethoxydisiloxane
SIP6717.0 pentamethylacetoxydisiloxane


SID3360.0 dichlorohexamethyltrisiloxane
bis(trimethylsiloxy)methylmethoxysilane
SIB1843.0
SID3394.0 1,5-diethoxyhexamethyltrisiloxane
SIB1837.0 bis(trimethylsiloxy)dichlorosilane
Space Shuttle tiles
are treated with
DMS-K05 chlorine terminated polydimethylsiloxane dimethylethoxysilane to
reduce water absorption.
DMS-XM11 methoxy terminated polydimethylsiloxane
DMS-XE11 ethoxy terminated polydimethylsiloxane
DMS-N05 dimethylamine terminated polydimethylsiloxane
DMS-S12 silanol terminated polydimethylsiloxane

SID4125.0 dimethylethoxysilane
SIT8719.5 [tris(trimethylsiloxy)silylethyl]dimethylchlorosilane




FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
21
Gelest, Inc.

Hydrophobic Silane Selection Guide
Linear Alkyl-Silanes
3 Hydrolyzeable Groups
Hydrolyzeable Groups Product Code Product Name
C2 hydrophobic, treatment for microporous mineral powders used as fillers for plastics
chloro SIE4901.0 ethyltrichlorosilane
methoxy SIE4901.4 ethyltrimethoxysilane
ethoxy SIE4901.2 ethyltriethoxysilane
acetoxy SIE4899.0 ethyltriacetoxysilane
C3 hydrophobic, treatment for microporous mineral powders used as fillers for plastics
chloro SIP6915.0 propyltrichlorosilane
methoxy SIP6918.0 propyltrimethoxysilane
ethoxy SIP6917.0 propyltriethoxysilane
amine/silazane
C4 moderate hydrophobicity, penetrates microporous structures, minimal organic compatibility
chloro SIB1982.0 n-butyltrichlorosilane
methoxy SIB1988.0 n-butyltrimethoxysilane
amine/silazane
C5 moderate hydrophobicity with minimal organic compatibility
chloro SIP6720.0 pentyltrichlorosilane
ethoxy SIP6720.2 pentyltriethoxysilane
C6 moderate hydrophobicity with moderate organic compatibility
chloro SIH6167.0 hexyltrichlorosilane
methoxy SIH6168.5 hexyltrimethoxysilane
ethoxy SIH6167.5 hexyltriethoxysilane
C7 moderate hydrophobicity with moderate organic compatibility
chloro SIH5846.0 heptyltrichlorosilane
C8 hydrophobic with moderate organic compatibility - generally most economical
chloro SIO6713.0 octyltrichlorosilane
methoxy SIO6715.5 octyltrimethoxysilane
ethoxy SIO6715.0 octyltriethoxysilane
amine
silazane (NH)
C10 hydrophobic, concentrates on surface of microporous structures
chloro SID2663.0 decyltrichlorosilane
ethoxy SID2665.0 decyltriethoxysilane
C11 hydrophobic, concentrates on surface of microporous structures, forms SAMs
chloro SIU9050.0 undecyltrichlorosilane
C12 hydrophobic, concentrates on surface of microporous structures, forms SAMs
chloro SID4630.0 dodecyltrichlorosilane
ethoxy SID4632.0 dodecyltriethoxysilane
C14 hydrophobic, concentrates on surface of microporous structures, forms SAMs
chloro SIT7093.0 tetradecyltrichlorosilane
C16 forms hydrophobic and oleophilic coatings, liquid a room temperature, forms SAMs
chloro SIH5920.0 hexadecyltrichlorosilane
methoxy SIH5925.0 hexadecyltrimethoxysilane
ethoxy SIH5922.0 hexadecyltriethoxysilane
C18 forms hydrophobic and oleophilic coatings allowing full miscibility with parafinic materials, forms SAMs
chloro SIO6640.0 octadecyltrichlorosilane
methoxy SIO6645.0 octadecyltrimethoxysilane
ethoxy SIO6642.0 octadecyltriethoxysilane
amine
proprietary SIS6952.0/PPI-GC18 Siliclad®/Glassclad® 18
C20 forms hydrophobic and oleophilic coatings, solid at room temperature
chloro SIE4661.0 eicosyltrichlorosilane
C20-24 forms hydrophobic and oleophilic coatings, solid at room temperature
chloro SID4621.0 docosyltrichlorosilane blend
C26-C34 forms hydrophobic and oleophilic coatings, solid at room temperature
chloro SIT8048.0 triacontyltrichlorosilane blend



22
Gelest, Inc.




2 Hydrolyzeable Groups 1 Hydrolyzeable Group
Product Code Product Name Product Code Product Name

SIE4896.0 ethylmethyldichlorosilane SIE4892.0 ethyldimethylchlorosilane




SIP6912.0 propylmethyldichlorosilane SIP6910.0 propyldimethylchlorosilane
SIP6911.0 propyldimethylmethoxysilane

SID4591.0 dipropyltetramethyldisilazane

SIB1934.0 n-butyldimethylchlorosilane

Long chain alkylsilanes are
SIB1937.0 n-butyldimethyl(dimethylamino)silane
processing additives for
crosslinked polyethylene
(XLPE) used in wire
and cable.

SIH6165.6 hexylmethyldichlorosilane



SIH5845.0 heptylmethyldichlorosilane

SIO6712.0 octylmethyldichlorosilane SIO6711.0 octyldimethylchlorosilane
SIO6711.1 octyldimethylmethoxysilane
SIO6712.2 octylmethyldiethoxysilane
SIO6711.3 octyldimethyl(dimethylamino)silane
SID4404.0 dioctyltetramethyldisilazane

SID2662.0 decylmethyldichlorosilane SID2660.0 decyldimethylchlorosilane
Surface conductivity of
glass substrates is reduced
by application of hydropho-
bic coatings. Surface
arc-tracking is eliminated
SID4628.0 dodecylmethyldichlorosilane SID4627.0 dodecyldimethylchlorosilane on fluorescent light
SID4629.0 dodecylmethyldiethoxysilane bulbs.
Control
Glasscla
d ® 18




SIO6625.0 octadecylmethyldichlorosilane SIO6615.0 octadecyldimethylchlorosilane
SIO6629.0 octadecylmethyldimethoxysilane SIO6618.0 octadecyldimethylmethoxysilane
SIO6627.0 octadecylmethyldiethoxysilane
SIO6617.0 octadecyldimethyl(dimethylamino)silane




SID4620.0 docosylmethyldichlorosilane blend

SIT8045.0 triacontyldimethylchlorosilane blend



23
Gelest, Inc.



Hydrophobic Silane Selection Guide
Branched and Cyclic Alkyl-Silanes
3 Hydrolyzeable Groups
Hydrolyzeable Groups Product Code Product Name
C3
chloro
C4
chloro SII6453.0 isobutyltrichlorosilane
methoxy SII6453.7 isobutyltrimethoxysilane
ethoxy SII6453.5 isobutyltriethoxysilane
chloro SIB1985.0 t-butyltrichlorosilane
C5
chloro SIC2555.0 cyclopentyltrichlorosilane
methoxy SIC2557.0 cyclopentyltrimethoxysilane
C6
chloro SID4069.0 (3,3-dimethylbutyl)trichlorosilane
chloro SIT7906.6 thexyltrichlorosilane
chloro SIC2480.0 cyclohexyltrichlorosilane
methoxy SIC2482.0 cyclohexyltrimethoxysilane
C7 norbornene
chloro SIB0997.0 bicycloheptyltrichlorosilane
chloro SIC2470.0 (cyclohexylmethyl)trichlorosilane
C8
chloro SII6457.0 isooctyltrichlorosilane
methoxy SII6458.0 isooctyltrimethoxysilane
chloro SIC2490.0 cyclooctyltrichlorosilane
C 10

C 12
SIA0325.0 adamantylethyltrichlorosilane
C 16
SIT8162.4 7-(trichlorosilylmethyl)pentadecane
C 18 silahydrocarbon
chloro SID4401.5 (di-n-octylmethylsilyl)ethyltrichlorosilane
C 24
chloro
C 28
chloro SIT8162.0 13-(trichlorosilylmethyl)heptacosane




24
Gelest, Inc.




2 Hydrolyzeable Groups 1 Hydrolyzeable Group Isobutyltriethoxysilane
solutions in ethanol
Product Code Product Name Product Code Product Name
are applied by spray
to protect architecture.
SII6463.0 isopropylmethyldichlorosilane SII6462.0 isopropyldimethylchlorosilane

SII6452.5 isobutyldimethylchlorosilane
SII6452.8 isobutylmethyldimethoxysilane

SIB1972.2 t-butylmethyldichlorosilane SIB1935.0 t-butyldimethylchlorosilane




SID4065.0 (3,3-dimethylbutyl)dimethylchlorosilane
SIT7906.0 thexyldimethylchlorosilane
SIC2468.0 cyclohexylmethyldichlorosilane SIC2465.0 cyclohexyldimethylchlorosilane
SIC2469.0 cyclohexylmethyldimethoxysilane

SIB0994.0 bicycloheptyldimethylchlorosilane



SII6456.6 isooctyldimethylchlorosilane




SID4074.0 (dimethylchlorosilyl)methylpinane




SID4401.0 (di-n-octylmethylsilyl)ethyldimethylchlorosilane

SIC2266.5 11-(chlorodimethylsilylmethyl)tricosane

SIC2266.0 13-(chlorodimethylsilylmethyl)heptacosane




25
Gelest, Inc.
Hydrophobic Silane Selection Guide
Phenyl- and Phenylalkyl-Silanes
3 Hydrolyzeable Groups
Hydrolyzeable Groups Product Code Product Name
spacer atoms = 0
chloro SIP6810.0 phenyltrichlorosilane
methoxy SIP6822.0 phenyltrimethoxysilane
ethoxy SIP6821.0 phenyltriethoxysilane
acetoxy SIP6790.0 phenyltriacetoxysilane
oxime/amine SIP6826.5 phenyltris(methylethylketoximino)silane
spacer atoms = 1
chloro SIB0970.0 benzyltrichlorosilane
ethoxy SIB0971.0 benzyltriethoxysilane
chloro SIP6813.0 1-phenyl-1-trichlorosilylbutane
spacer atoms = 2
chloro SIP6722.0 phenethyltrichlorosilane
methoxy SIP6722.6 phenethyltrimethoxysilane
amine/silazane
spacer atoms = 3
chloro
spacer atoms = 4
chloro SIP6724.9 4-phenylbutyltrichlorosilane
chloro SIP6723.3 phenoxypropyltrichlorosilane
spacer atoms > 4
chloro SIP6736.4 phenoxyundecyltrichlorosilane
chloro SIP6723.4 phenylhexyltrichlorosilane


Substituted Phenyl- and Phenylalkyl-Silanes

spacer atoms = 0
chloro SIT8040.0 p-tolyltrichlorosilane
methoxy SIT8042.0 p-tolyltrimethoxysilane
spacer atoms = 2
methyl/chloro
ethyl/methoxy SIE4897.5 ethylphenethyltrimethoxysilane
t-butyl/chloro SIB1973.0 p-(t-butyl)phenethyltrichlorosilane
spacer atoms = 3
chloro SIM6492.5 3-(p-methoxyphenyl)propyltrichlorosilane

Napthyl-Silanes
methoxy SIN6597.0 1-napthyltrimethoxysilane
chloro SIN6596.0 (1-napthylmethyl)trichlorosilane

Specialty Aromatic- Silanes
spacer atoms = 0
chloro
spacer atoms = 4
chloro




PLEASE INQUIRE ABOUT BULK QUANTITIES
26
Gelest, Inc.




2 Hydrolyzeable Groups 1 Hydrolyzeable Group
Product Code Product Name Product Code Product Name

SIP6738.0 phenylmethyldichlorosilane SIP6728.0 phenyldimethylchlorosilane
SIP6740.0 phenylmethyldimethoxysilane
SIP6739.0 phenylmethyldiethoxysilane SIP6728.4 phenyldimethylethoxysilane

SIP6736.8 phenylmethylbis(dimethylamino)silane

SIB0962.0 benzyldimethylchlorosilane

SIP6738.5 1-phenyl-1-methyldichlorosilylbutane

SIP6721.5 phenethylmethyldichlorosilane SP6721.0 phenethyldimethylchlorosilane

SIP6721.2 phenethyldimethyl(dimethylamino)silane

SIP6744.0 (3-phenylpropyl)methyldichlorosilane SIP6743.0 (3-phenylpropyl)dimethylchlorosilane

SIP6724.8 4-phenylbutylmethyldichlorosilane SIP6724.7 4-phenylbutyldimethylchlorosilane
SIP6723.25 phenoxypropylmethyldichlorosilane SIP6723.2 phenoxypropyldimethylchlorosilane




SIT8035.0 p-tolylmethydichlorosilane SIT8030.0 p-tolyldimethylchlorosilane



SIM6511.0 (p-methylphenethyl)methyldichlorosilane

SIB1972.5 p-(t-butyl)phenethyldimethylchlorosilane

SIM6492.4 3-(p-methoxyphenyl)propylmethyldichlorosilane




SIP6723.0 m-phenoxyphenyldimethylchlorosilane


SIN6598.0 p-nonylphenoxypropyldimethylchlorosilane


FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
27
Gelest, Inc.


Hydrophobic Silane Selection Guide
Fluorinated Alkyl-Silanes
3 Hydrolyzeable Groups
Hydrolyzeable Groups Product Code Product Name
C3
chloro SIT8371.0 (3,3,3-trifluoropropyl)trichlorosilane
methoxy SIT8372.0 (3,3,3-trifluoropropyl)trimethoxysilane
amine/silazane
C6
chloro SIN6597.6 nonafluorohexyltrichlorosilane
methoxy SIN6597.7 nonafluorohexyltrimethoxysilane
ethoxy SIN6597.65 nonafluorohexyltriethoxysilane
C8
chloro SIT8174.0 (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane
methoxy SIT8176.0 (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane
ethoxy SIT8175.0 (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane
C10
chloro SIH5841.0 (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane
methoxy SIH5841.5 (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane
ethoxy SIH5841.2 (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane




DiAlkyl Silanes
2 Hydrolyzeable Groups
Highest Carbon # Next Carbon # Hydrolyzeable Groups Product Code Product Name
C2 C2
chloro SID3402.0 diethyldichlorosilane
ethoxy SID3404.0 diethyldiethoxysilane
C3 C3
chloro SID3537.0 diisopropyldichlorosilane
methoxy SID3538,0 diisopropyldimethoxysilane
C4 C4
chloro SID3203.0 di-n-butyldichlorosilane
methoxy SID3214.0 di-n-butyldimethoxysilane
methoxy SID3530.0 diisobutyldimethoxysilane
ethoxy SID3528.0 diisobutyldiethoxysilane
C4 C3
SIB1971.0 t-butylisopropyldimethoxysilane
C5 C5
chloro SID3390.0 dicyclopentyldichlorosilane
methoxy SID3391.0 dicyclopentyldimethoxysilane
C6 C6
chloro SID3510.0 di-n-hexyldichlorosilane
chloro SID3382.0 dicyclohexyldichlorosilane
C8 C8
chloro SID4400.0 di-n-octyldichlorosilane




28
Gelest, Inc.




2 Hydrolyzeable Groups 1 Hydrolyzeable Group
Product Code Product Name Product Code Product Name

SIT8369.0 (3,3,3-trifluoropropyl)methyldichlorosilane SIT8364.0 (3,3,3-trifluoropropyl)dimethylchlorosilane
SIT8370.0 (3,3,3-trifluoropropyl)methyldimethoxysilane
SIB1828.4 bis(trifluoropropyl)tetramethyldisilazane

SIN6597.3 nonafluorohexyldimethylchlorosilane




SIT8172.0 (tridecafluoro-1,1,2,2-tetrahydrooctyl)methyldichlorosilane SIT8170.0 (tridecafluoro-1,1,2,2-tetrahydrooctyl)dimethylchlorosilane




SH5840.6 (heptadecafluoro-1,1,2,2-tetrahydrodecyl)methyldichlorosilane SIH5840.4 (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethylchlorosilane




Pigments treated with hydrophobic silanes resist agglomeration in highly polar
vehicle and film-forming compositions such as those used in nail polish.




29
Gelest, Inc.

Hydrophobic Silane Properties
Conventional Surface Bonding
name MW bp/mm (mp) D420 nD20
SIA0110.0
ACETOXYTRIMETHYLSILANE 132.23 103-4° 0.891 1.3890
O CH3 O-TRIMETHYLSILYLACETATE (-32°)mp
C5H12O2Si flashpoint: 4°C (39°F)
CH3COSi CH3 vapor pressure, 30°: 35mm
HYDROLYTIC SENSITIVITY: 4 no reaction under neutral conditions
CH3 [2754-27-0] 25g/Â¥4,500 100g/Â¥14,400
TSCA HMIS: 3-4-1-X

SIA0325.0
ADAMANTYLETHYLTRICHLOROSILANE 297.73
135°/3 1.2204 1.5135
CH2CH2SiCl3
contains up to 5% α -isomer
C12H19Cl3Si (36-7°)mp
flashpoint: 155°C (310°F)
forms silica bonded phases for reverse phase chromatography1.
1. Yang et al, Anal. Chem., 59, 2750, 1988
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[37843-11-1] 5.0g/Â¥31,000 25g/Â¥124,000
TSCA HMIS: 3-1-1-X

SIB0962.0
CH 3
BENZYLDIMETHYLCHLOROSILANE 184.74 75-6°/15 0.949 1.5040
CH 2Si Cl C9H13ClSi flashpoint: 73°C (163°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH 3
[1833-31-4] 10g/Â¥18,500 50g/Â¥73,800
TSCA HMIS: 3-2-1-X

SIB0970.0
Cl
BENZYLTRICHLOROSILANE 225.58 140-2°/10 1.288 1.527
C7H7Cl3Si TOXICITY- oral rat, LD50: 2830mg/kg
CH2Si Cl
dipole moment: 1.78 flashpoint: 87°C (189°F)
Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[770-10-5] 25g/Â¥15,400 100g/Â¥50,100
TSCA HMIS: 3-2-1-X

SIB0971.0
OC 2H 5
BENZYLTRIETHOXYSILANE 254.40 148°/26 0.986 1.462825
CH 2Si OC 2H 5 C13H22O3Si flashpoint: 127°C (260°F)
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OC 2H 5
[2549-99-7] 10g/Â¥13,000 50g/Â¥51,800
TSCA HMIS: 2-1-0-X

SIB0994.0
2-(BICYCLOHEPTYL)DIMETHYLCHLOROSILANE 188.77 52-5°/1 0.99
Si(CH 3)2Cl
C9H17ClSi flashpoint: 87° (189°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[117046-42-1 25g/Â¥28,800 100g/Â¥93,600
HMIS: 3-2-1-X

SIB0997.0
2-(BICYCLOHEPTYL)TRICHLOROSILANE 229.61 63-4°/4.5 1.2678 1.4919
SiCl 3
C7H11Cl3Si flashpoint: 83°C (181°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[18245-29-9] 10g/Â¥13,100 50g/Â¥52,200
TSCA HMIS: 3-2-1-X

SIB1068.0
BIS(DIETHYLAMINO)DIMETHYLSILANE 202.42 192-5° 0.826 1.435
(C2H5)2N CH3 C10H26N2Si flashpoint: 35°C (95°F)
Si silylates diamines to cyclic diaminosilanes1.
1. E. Schwartz et al, J. Org. Chem., 50, 5469, 1985.
(C2H5)2N CH3 HYDROLYTIC SENSITIVITY: 8 Si-NR reacts rapidly with moisture, water, protic solvents
[4669-59-4] 50g/Â¥54,000
TSCA HMIS: 3-3-1-X

SIB1072.0
BIS(DIMETHYLAMINO)DIMETHYLSILANE 146.31 128-9° 0.810 1.416922
(CH3)2N CH3 C6H18N2Si (-98°)mp
Si flashpoint: -3°C (27°F)
couples silanol-terminated siloxanes
(CH3)2N CH3 HYDROLYTIC SENSITIVITY: 8 Si-NR reacts rapidly with moisture, water, protic solvents
[3768-58-9] 25g/Â¥9,900 100g/Â¥32,400
TSCA HMIS: 3-4-1-X

SIB1828.4
BIS(TRIFLUOROPROPYL)TETRAMETHYL- 325.45 76-8°/10 1.110 1.3860
CH3 CH3
DISILAZANE, 95% flashpoint: 78°C (173°F)
CF3CH2CH2 Si N Si CH2CH2CF3 C10H21F6NSi2
fluorinated blocking agent
CH3 H CH3
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[39482-87-6] 50g/Â¥63,000
TSCA HMIS: 2-2-1-X



30
Gelest, Inc.

name MW bp/mm (mp) D420 nD20

SIB1837.0
BIS(TRIMETHYLSILOXY)DICHLOROSILANE 277.37 173° 1.0017 1.3983
CH3 Cl CH3
(-53°)mp
3,3-DICHLOROHEXAMETHYLTRISILOXANE
CH3 Si O Si O Si CH3
C6H18CI2O2Si3 vapor pressure, 57°: 12mm
CH3 Cl CH3




HYDROPHOBIC
[2750-44-9] HMIS: 3-2-1-X 25g/Â¥43,200
CH3
SIB1843.0
H3C Si CH3
BIS(TRIMETHYLSILOXY)METHYLMETHOXY- 252.53 82°/47 0.862 1.3883225
O
SILANE
H3C Si OCH 3
C8H24O3Si3
O
[7671-19-4] HMIS: 3-2-1-X 25g/Â¥30,600
H3C Si CH3
CH3 SIB1846.0
N,O-BIS(TRIMETHYLSILYL)ACETAMIDE 203.43 71-3°/35 0.832 1.418
C8H21NOSi2 BSA (-24°)mp
OSi(CH 3)3
versatile blocking agent. flashpoint: 42°C (108°F)
CH3C NSi(CH 3)3 TOXICITY - oral rat, LD50: 1580mg/kg




COMMERCIAL
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[10416-59-8] 25g/Â¥6,800 100g/Â¥23,000 2kg/Â¥196,000
TSCA HMIS: 3-3-1-X

SIB1876.0
BIS(TRIMETHYLSILYL)TRIFLUOROACETAMIDE 257.40
45-50°/15 0.969 1.3840
(-10°)mp
BSTFA
OSi(CH 3)3 C8H18F3NOSi2 flashpoint: 24°C (75°F)
silylation reagent for preparing derivatives of amino acids1.
CF3C NSi(CH 3)3
1. D. Stalling et al, Biochem. Biophys., Res. Comm., 31, 616, 1968.
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[25561-30-2] 25g/Â¥20,700 100g/Â¥64,400 2kg/inquire
TSCA HMIS: 3-3-1-X

SIB1934.0
CH3 n-BUTYLDIMETHYLCHLOROSILANE 150.72 138° 0.8751 1.4205
C6H15ClSi flashpoint: 39°C (103°F)
CH3CH2CH2CH2Si Cl forms bonded phases for HPLC
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH3
[1000-50-6] 25g/Â¥18,500 100g/Â¥59,900
TSCA HMIS: 3 -3-1-X

SIB1935.0
t-BUTYLDIMETHYLCHLOROSILANE 150.72 124-6° 0.83




COMMERCIAL
CH3 Me C6H15ClSi (87-90°)mp
vapor pressure, 100°: 476mm flashpoint: 22°C (73°F)
H3C C Si Cl silylation reagent - derivatives resistant to Grignards, alkyl lithium compounds etc.
blocking agent widely used in prostaglandin synthesis
CH3 Me
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[18162-48-6] 25g/Â¥15,300 100g/Â¥49,500 2kg/Â¥238,000
TSCA HMIS: 3-4-1-X

SIB1937.0
CH3 n-BUTYLDIMETHYL(DIMETHYLAMINO)SILANE 159.35 47-9°/12 0.772 1.4220
C8H21NSi flashpoint: 26°C (79°F)
CH3CH2CH2CH2Si N(CH 3)2
highly reactive reagent for bonded phases without acidic byproduct
CH3 HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[181231-67-4] 10g/Â¥16,200 50g/Â¥64,800
TSCA-L HMIS: 3-3-1-X
CH3 OCH 3 CH SIB1971.0
3
t-BUTYLISOPROPYLDIMETHOXYSILANE 190.36 75°/20 0.871 1.4189
H3C C Si CH
C9H22O2Si
CH OCH 3 CH3 1.0g/Â¥56,700
HMIS: 3-2-1-X
3

SIB1972.0
CH3CH2CH2CH2 Cl n-BUTYLMETHYLDICHLOROSILANE 171.14 148° 1.0424 1.4312
Si C5H12Cl2Si flashpoint: 30°C (86°F)
H3C Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
[18147-23-4] 10g/Â¥14,900
TSCA HMIS: 3-3-1-X

SIB1972.2
CH3 CH3 t-BUTYLMETHYLDICHLOROSILANE 171.14 130-2°
C5H12Cl2Si (88-90°)mp
H3C C Si Cl flashpoint: 26°C (79°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
Cl
CH3
[18147-18-7] 5.0g/Â¥37,800
HMIS: 3-3-1-X



FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
31
Gelest, Inc.


name MW bp/mm (mp) D420 nD20
SIB1972.5
p-(t-BUTYL)PHENETHYLDIMETHYLCHLORO- 254.87 122-3°/2 0.95
CH3 CH3
SILANE contains ~5% meta isomer
H3C C CH2 CH2 SiCl
C14H23ClSi
CH3
CH3 HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
[93502-75-1] 25g/Â¥35,100
HMIS: 3-2-1-X


SIB1973.0
CH3 p-(t-BUTYL)PHENETHYLTRICHLOROSILANE 295.71 124-9°/2.5 1.16
CH2 CH2 SiCl3 C12H17Cl3Si mixed isomers flashpoint: 108°C (226°F)
H3C C
for HPLC bonded phase
CH3 HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
25g/Â¥33,300
HMIS: 3-2-1-X


SIB1982.0
n-BUTYLTRICHLOROSILANE 191.56 142-3° 1.1608 1.4364
CH3CH2CH2CH2SiCl3 C4H9Cl3Si flashpoint: 45°C (114°F)
vapor pressure, 31°: 10mm
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
[7521-80-4] 25g/Â¥15,800 100g/Â¥51,300
TSCA HMIS: 3-3-1-X


SIB1985.0
CH3 Cl t-BUTYLTRICHLOROSILANE 191.56 142-3° 1.1608 1.436
C4H9Cl3Si (97-100°)mp
H3C C Si Cl
forms silanetriol flashpoint: 40°C (105°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
CH3 Cl
[18171-74-9] 10g/Â¥17,600 50g/Â¥70,200
TSCA HMIS: 3-3-1-X

SIB1988.0
n-BUTYLTRIMETHOXYSILANE 178.30 164-5° 0.9312 1.3979
C7H18O3Si flashpoint: 49°C (120°F)
CH3CH2CH2CH2Si(OCH 3)3
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[1067-57-8] 25g/Â¥18,000 100g/Â¥58,500
TSCA HMIS: 3-2-1-X

SIB1989.0
CH3 OCH 3
t-BUTYLTRIMETHOXYSILANE 178.30 140-1° 0.903 1.3941
H3C C Si OCH 3
C7H18O3Si
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
CH3 OCH 3
[18395-29-4] 10g/Â¥60,800
HMIS: 3-2-1-X

SIC2266.0
13-(CHLORODIMETHYLSILYLMETHYL)- 487.37 200-210°/0.01 0.84825 1.454230
HEPTACOSANE, 95%
C30H63ClSi
forms hydrophobic bonded phases
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
10g/Â¥49,500
[194243-00-0] TSCA-L HMIS: 3-1-1-X

SIC2266.5
11-(CHLORODIMETHYLSILYLMETHYL)- 431.27 170°/0.075 1.457522
TRICOSANE
H3C Si CH3
C26H55ClSi
Cl
forms self-assembled oleophilic monolayers
employed as bonded phase in HPLC
10g/Â¥42,800
HMIS: 3-1-1-X
H3C Si CH3
Cl
SIC2465.0
CYCLOHEXYLDIMETHYLCHLOROSILANE 176.76 52-3°/2 0.956 1.4626
C8H17ClSi flashpoint: 63°C (145°F)
CH3 silane blocking agent with good resistance to Grignard reagents.
Si
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
H3C Cl
[71864-47-6] 25g/Â¥15,300 100g/Â¥49,500
HMIS:: 3-2-1-X
COMMERCIAL




SIC2468.0
CYCLOHEXYLMETHYLDICHLOROSILANE 197.18 83°/15 1.095 1.4724
C7H14Cl2Si flashpoint: 66°C (151°F)
Cl
Si HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
H3C Cl [5578-42-7] 25g/Â¥10,800 2 kg/Â¥133,000
TSCA HMIS: 3-2-1-X



PLEASE INQUIRE ABOUT BULK QUANTITIES
32
Gelest, Inc.
name MW bp/mm (mp) D420 nD20
SIC2469.0




COMMERCIAL
CYCLOHEXYLMETHYLDIMETHOXYSILANE 188.34 196° 0.9472 1.4354
C9H20O2Si TOXICITY- oral rat, LD50: 3000mg/kg
vapor pressure, 20°: 12mm flashpoint: 66°C (151°F)
OCH 3
donor for polyolefin polymerization
Si




HYDROPHOBIC
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
H3C OCH 3
[17865-32-6] 25g/Â¥4,500 100g/Â¥15,800 2kg/Â¥174,000
TSCA HMIS: 2-3-1-X

SIC2470.0
(CYCLOHEXYLMETHYL)TRICHLOROSILANE 231.62 94-8°/11
C7H13Cl3Si
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH2
[18388-16-4] 10g/Â¥39,600
TSCA HMIS: 3-2-1-X
SiCl3

SIC2480.0
CYCLOHEXYLTRICHLOROSILANE 217.60 90-1°/10 1.222 1.4774
C6H11Cl3Si flashpoint: 91°C (195°F)
intermediate for melt-processable silsesquioxane-siloxanes1.
employed in solid-phase extraction columns2.
Cl
1. J. Lichtenhan et al, Macromolecules, 26, 2141, 1993.
Si
2. B. Tippins, Nature, 334, 273, 1988.
Cl Cl
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[98-12-4] 25g/Â¥14,400 100g/Â¥46,800
TSCA HMIS: 3-2-1-X

SIC2482.0
CYCLOHEXYLTRIMETHOXYSILANE 204.34 207-9°
C9H20O3Si
OCH 3
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
Si
[17865-54-2] 10g/Â¥13,100 50g/Â¥52,200
CH3O OCH 3 HMIS: 2-3-1-X

SIC2490.0
CYCLOOCTYLTRICHLOROSILANE, 95% 245.65 85-9°/1.25 1.19
C8H15Cl3Si
SiCl3 HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
10g/Â¥15,800 50g/Â¥63,000
HMIS: 3-2-1-X

SIC2555.0
CYCLOPENTYLTRICHLOROSILANE 203.57 178-9° 1.2255 1.4713
SiCl3 C5H9Cl3Si flashpoint: 77°C (171°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[14579-03-4] 25g/Â¥18,900 100g/Â¥61,200
HMIS: 3-2-1-X

SIC2557.0
CYCLOPENTYLTRIMETHOXYSILANE 190.31 75°/10 0.99025 1.424025
Si(OCH 3)3 C8H18O3Si flashpoint: 54°C (130°F)
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[143487-47-2] 10g/Â¥14,400 50g/Â¥57,600
HMIS: 3-3-1-X

SID2660.0
CH3
n-DECYLDIMETHYLCHLOROSILANE 234.88 98°/2 0.866 1.441
CH3(CH2)9 Si Cl C12H27ClSi flashpoint: 137°C (279°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH3 [38051-57-9] 25g/Â¥15,300 100g/Â¥49,500
TSCA HMIS: 3-1-1-X

SID2662.0
Cl
n-DECYLMETHYLDICHLOROSILANE 255.31 111-4°/3 0.960 1.4490
CH3(CH2)9 Si CH3 C11H24Cl2Si flashpoint: 120°C (248°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl [18051-88-2] 25g/Â¥12,600
TSCA HMIS: 3-1-1-X

SID2663.0
Cl
n-DECYLTRICHLOROSILANE 275.72 133-7°/5 1.0540 1.4528
CH3(CH2)9 Si Cl C10H21Cl3Si flashpoint: >110°C (>230°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl [13829-21-5] 25g/Â¥8,600 100g/Â¥27,900
TSCA HMIS: 3-1-1-X

SID2665.0
OC2H5 n-DECYLTRIETHOXYSILANE 304.54 150°/8 0.8790 1.4220
C16H36O3Si
CH3(CH2)9 Si OC2H5
see also SIB1829.0 for dipodal version
OC2H5 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[2943-73-9] 25g/Â¥24,300 100g/Â¥78,800
HMIS: 2-1-0-X


(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
33
Gelest, Inc.
name MW bp/mm (mp) D420 nD20
SID3203.0
nC4H9 Cl DI-n-BUTYLDICHLOROSILANE, 95% 213.22 212° 0.991 1.4448
C8H18Cl2Si flashpoint: 64°C (147°F)
Si
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
nC4H9 Cl
[3449-28-3] 10g/Â¥23,400 50g/Â¥93,600
TSCA HMIS: 3-2-1-X

SID3214.0
nC4H9 OCH 3 DI-n-BUTYLDIMETHOXYSILANE 204.39 125°/50 0.861
C10H24O2Si flashpoint: 103°C (217°F)
Si
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
nC4H9 OCH 3 [18132-63-3] 25g/Â¥28,800
TSCA-L HMIS: 3-2-1-X

SID3349.0
CH3 H CH3 DI-n-BUTYLTETRAMETHYLDISILAZANE 245.55 81°/2 0.80 1.4353
C12H31NSi2 flashpoint: 86°C (187°F)
nC4H9 Si N Si nC4H9
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
CH3 CH3 [82356-80-7] 25g/Â¥33,300 100g/Â¥108,000
HMIS: 2-1-1-X

SID3360.0
1,5-DICHLOROHEXAMETHYLTRISILOXANE, 95% 277.37 184° 1.018 1.4071
CH3 CH3 CH3 C6H18Cl2O2Si3 (-53°)mp
flashpoint: 76°C (169°F)
Cl Si O Si O Si Cl
ΔHvap: 11.4 kcal/mole vapor pressure:, 50°: 1mm
CH3 CH3 CH3 HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[3582-71-6] 25g/Â¥16,700 100g/Â¥54,000
TSCA HMIS: 3-2-1-X

SID3367.6
Cl DICHLOROPHENYLTRICHLOROSILANE, 95% 280.44 260-1° 1.553 1.564
Cl
C6H3Cl5Si-isomeric mixture flashpoint: 150°C (302°F)
Cl Si Cl vapor pressure, 102°: 7mm
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl [27137-85-5] 25g/Â¥20,300 100g/Â¥65,700
TSCA HMIS: 3-1-1-X

SID3372.0
CH3 CH3 1,3-DICHLOROTETRAMETHYLDISILOXANE 203.22 138° 1.039 1.4054
C4H12Cl2OSi2 (-37°)mp
Cl Si O Si Cl vapor pressure, 25°: 8mm flashpoint: 15°C (59°F)
blocking agent
CH3 CH3 HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[2401-73-2] 25g/Â¥16,200 100g/Â¥52,700
TSCA HMIS: 3-4-1-X

SID3382.0
DICYCLOHEXYLDICHLOROSILANE 265.30 123°/0.4 1.103
C12H22Cl2Si flashpoint: 149°C (300°F)
Cl
Si
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl
[18035-74-0] 25g/Â¥27,000
HMIS: 3-1-1-X

SID3390.0
DICYCLOPENTYLDICHLOROSILANE 237.24 105-7°/10 1.110
C10H18Cl2Si flashpoint: 84°C (183°F)
Cl Si Cl
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[139147-73-2] 10g/Â¥13,100 50g/Â¥52,200
HMIS: 3-2-1-X

SID3391.0
DICYCLOPENTYLDIMETHOXYSILANE 228.40 120°/6 1.00 1.4663
C12H24O2Si flashpoint: 102°C (216°F)
H3CO Si OCH 3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[126990-35-0] 10g/Â¥10,800 50g/Â¥43,200
TSCA HMIS: 3-1-1-X

SID3394.0
CH3 CH3 CH3
1,5-DIETHOXYHEXAMETHYLTRISILOXANE 296.59 51-2°/0.8 0.912 1.3889
C2H5O Si O Si O Si OC2H5 C10H28O4Si3
[17928-13-1] HMIS: 2-2-1-X 25g/Â¥53,100
CH3 CH3 CH3
SID3398.0
(DIETHYLAMINO)TRIMETHYLSILANE 145.32 126-7° 0.7627 1.4109
TMSDEA (-10°)mp
C7H19NSi flashpoint: 10°C (50°F)
CH3CH2 ΔHform: -87.7kcal/mole
NSi(CH 3)3
silylation reagent: F&F: 3, 317; 4, 544; 6, 634; 18, 382
CH CH 3 2
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[996-50-9] 25g/Â¥12,600 100g/Â¥40,500
TSCA HMIS: 3-4-1-X


PLEASE INQUIRE ABOUT BULK QUANTITIES
34
Gelest, Inc.
name MW bp/mm (mp) D420 nD20
SID3402.0
DIETHYLDICHLOROSILANE 157.11 130° 1.0504 1.4309
C4H10Cl2Si (-96.5)mp
ΔHvap: 10.0 kcal/mole
CH3CH2 Cl TOXICITY- oral rat, LD20: 1000mg/kg
dipole moment: 2.4 flashpoint: 27°C (81°F)
Si




HYDROPHOBIC
surface tension: 30.3 dynes/cm thermal conductivity: 0.134 W/m°C
CH3CH2 Cl vapor pressure, 21°: 10mm
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[1719-53-5] 25g/Â¥9,900 100g/Â¥32,400
TSCA HMIS: 3-3-1-X

SID3404.0
DIETHYLDIETHOXYSILANE 176.33 157° 0.8622 1.4022
CH3CH2 OC2H5
C8H20O2Si flashpoint: 43°C (109°F)
Si vapor pressure, 73°: 38mm
CH3CH2 OC2H5 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[5021-93-2] 10g/Â¥15,300 50g/Â¥61,200
TSCA HMIS: 2-3-1-X

SID3510.0
CH3(CH2)5 Cl DI-n-HEXYLDICHLOROSILANE 269.33 111-3°/6 0.962 1.4518
Si C12H26Cl2Si flashpoint: 88°C (190°F)
CH3(CH2)5 Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[18204-93-8] 10g/Â¥17,600 50g/Â¥70,200
TSCA HMIS: 3-2-1-X
CH3
H3C
SID3526.0
CH
DIISOBUTYLCHLOROSILANE 178.78 166-7° 0.995 1.4340
CH2
C8H19ClSi flashpoint: 42°C (108°F)
H Si Cl
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH2
[18279-73-7] 25g/Â¥54,000
HMIS: 3-3-1-X
CH3 CH
H3C
H3C CH3
CH SID3528.0
DIISOBUTYLDIETHOXYSILANE 232.44 221° 0.8450 1.4179
CH2
CH3CH2O Si OCH 2CH3 C12H28O2Si
CH2 [18297-14-8] HMIS: 2-2-1-X 10g/Â¥38,700
CH
SID3530.0
H3C CH3 CH3
HC 3
DIISOBUTYLDIMETHOXYSILANE 204.39 120°/6 0.87 1.4167
CH
C10H24O2Si flashpoint: 102°C (216°F)
CH2
intermediate for diisobutylsilanediol, a liquid crystal.
CH3O Si OCH 3
employed in polyolefin polymerization
CH2
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
CH
H3C CH3 [17980-32-4] 10g/Â¥8,600 50g/Â¥34,200
TSCA HMIS: 2-1-1-X

SID3537.0
H3C CH3 DIISOPROPYLDICHLOROSILANE 185.17 64-5°/25 1.026 1.4450
C6H14Cl2Si flashpoint: 43°C (109°F)
CH
forms bis(blocked) or tethered alcohols1,2.
Cl Si Cl
1. J. Hutchinson et al, Tet. Lett., 32, 573, 1991.
2. C. Bradford et al, Tet. Lett., 36, 4189, 1995.
CH
H3C CH3 HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[7751-38-4] 10g/Â¥9,000 50g/Â¥36,000
HMIS: 3-3-1-X

SID3538.0
H3C CH3
DIISOPROPYLDIMETHOXYSILANE 176.33 85-7°/50 0.875 1.4140
CH
C8H20O2Si flashpoint: 43°C (109°F)
cocatalyst for α-olefin polymerization1.
CH3O Si OCH 3
1. S. Lee et al, US Pat. 5,223,466, 1993
CH
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
H3C CH3
[18230-61-0] 10g/Â¥17,600 50g/Â¥61,200
TSCA HMIS: 3-3-1-X
Si(OC2H5)3
SID3544.0
3,5-DIMETHOXYPHENYLTRIETHOXYSILANE 300.43 136-8°/0.6 1.050
C14H24O5Si
5.0g/Â¥78,800
HMIS: 2-1-1-X
CH3O OCH 3
SID3605.0
(N,N-DIMETHYLAMINO)TRIMETHYLSILANE 117.27 85-6° 0.741 1.3970
TMSDMA PENTAMETHYLSILANAMINE flashpoint: -19°C (-3°F)
COMMERCIAL




ΔHvap: 7.6 kcal/mole
CH3 C5H15NSi
CH3 stronger silylation reagent than HMDS; silylates amino acids1.
N Si CH3
selectively silylates equatorial hydroxyl groups in prostaglandin synthesis2.
CH3
1. K. Rühlman, Chem. Ber., 94, 1876, 1961.
CH3
2. E. Yankee et al, J. Am. Chem. Soc., 94, 3651, 1972.
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[2083-91-2] 25g/Â¥17,100 100g/Â¥55,400 2kg/inquire
TSCA HMIS: 3-4-1-X



(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
35
Gelest, Inc.


name MW bp/mm (mp) D420 nD20
SID4040.0
CH3CHCH 2CH3 DIMETHYLBIS(s-BUTYLAMINO)SILANE 95% 202.42 82°/15 0.810 1.4271
C10H26N2Si (<-50°)mp
NH
H3C TOXICITY- oral rat, LD50: 907mg/kg
Si flashpoint: 40°C (104°F)
H3C NH chain-extender for silicones
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH3CHCH 2CH3
[93777-98-1] 25g/Â¥17,600 100g/Â¥57,200
TSCA HMIS: 3-3-1-X

SID4065.0
(3,3-DIMETHYLBUTYL)DIMETHYLCHLORO- 178.78 167° 0.849 1.4240
CH3 CH3
SILANE NEOHEXYLDIMETHYLCHLOROSILANE flashpoint: 38°C (100°F)
CH3CCH2CH2Si Cl C8H19ClSi
blocking agent
CH3 CH3 HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[96220-76-7] 25g/Â¥15,300 100g/Â¥49,500
HMIS: 3-3-1-X

SID4069.0
CH3 Cl
(3,3-DIMETHYLBUTYL)TRICHLOROSILANE 219.61 183-4° 1.1355 1.4479
CH3CCH2CH2Si Cl NEOHEXYLTRICHLOROSILANE
C6H13Cl3Si
CH3 Cl [105732-02-3] 25g/Â¥21,600
HMIS: 3-2-1-X

SID4074.0
(DIMETHYLCHLOROSILYL)METHYLPINANE 230.85 93-4°/2 0.957 1.4780
CH3
C12H23ClSi flashpoint: 92°C (198°F)
1*S,2*S,5*S [α]D: -5.15; >95% optical purity
CH2 Si Cl
acetylenic derivative forms chiral polymer membrane that resolves amino acids1.
CH3 1. T. Aoki et al, Makromol. Chem. Rapid Commun, 13, 565, 1992
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[2182-66-3] 10g/Â¥15,800
TSCA HMIS: 3-2-1-X
COMMERCIAL




SID4074.4
1,1-DIMETHYLCYCLOSILAZANES, 22-25% 0.69
in hexane primarily trimer and tetramer flashpoint: 20°C (-25°F)
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
100g/Â¥8,600 2kg/Â¥63,000
TSCA HMIS: 2-4-1-X

SID4076.0
DIMETHYLDIACETOXYSILANE 176.24 164-6° 1.054 1.4030
O CH3 O C6H12O4Si flashpoint: 37°C (98°F)
reagent for the preparation of cis-diols and corticosteroids1.
CH3CO Si OCCH 3 1. R. Kelley, J. Chromatog., 43, 229, 1969; F&F 3, 113
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
CH3 [2182-66-3] 100g/Â¥13,500 500g/Â¥54,000
TSCA HMIS: 2-3-1-X

SID4120.0
DIMETHYLDICHLOROSILANE 129.06
70-1° 1.0637 1.4055
C2H6Cl2Si (-76°)mp
TOXICITY- ihl rat: LC50: 930ppm/4H
viscosity: 0.47 cSt flashpoint: -10°C (14°F)
CH3
ΔHvap: 8.0 kcal/mole ΔHcomb: -491 kcal/mole
vapor pressure, 17°: 100mm specific heat: 0.22 cal/g/°
Cl Si Cl
coefficient of thermal expansion: 1.3 x 10-3 surface tension: 20.1 dynes/cm
COMMERCIAL




critical temperature: 247.2° critical pressure: 34.4 atm
CH3
autoignition temperature: 410° flammability limits: 3.4-10.4%
fundamental monomer for silicones; hydrophobic surface treatment
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[75-78-5]
TSCA HMIS: 3-4-2-X


SID4120.1
DIMETHYLDICHLOROSILANE, 99+% 129.06 70-1° 1.0637 1.4055
CH3
C2H6Cl2Si (-76°)mp
redistilled flashpoint: -10°C (14°F)
Cl Si Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[75-78-5]
TSCA HMIS: 3-4-2-X
CH3



PLEASE INQUIRE ABOUT BULK QUANTITIES
36
Gelest, Inc.


name MW bp/mm (mp) D420 nD20
SID4121.0
DIMETHYLDIETHOXYSILANE 148.28 114-5° 0.8395 1.3805
C6H16O2Si (-97°)mp




HYDROPHOBIC
viscosity; 0.53cSt TOXICITY- oral rat, LDLo: 1000mg/kg
CH3 vapor pressure, 25°: 15mm flashpoint: 11°C (51°F)
ΔHvap: 9.8 kcal/mole ΔHcomb: -1119 kcal/mole
C2H5O Si OC2H5 ΔHform: 200 kcal/mole dipole moment: 1.39
coefficient of thermal expansion: 1.3 x 10-3
CH3




COMMERCIAL
hydrophobic surface treatment and release agent
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[78-62-6] 100g/Â¥5,400 2kg/Â¥50,400 15kg/inquire
TSCA HMIS: 2-4-1-X

SID4123.0 (D021A)
CH3 DIMETHYLDIMETHOXYSILANE 120.22 82° 0.8646 1.3708
C4H12O2Si (-80°)mp
CH3O Si OCH 3 ΔHcomb: 832 kcal/mole flashpoint: -8°C (18°F)
ΔHform: 171 kcal/mole dipole moment 1.33
CH3 vapor pressure, 36°: 100mm viscosity, 20°C: 0.44cSt
coefficient of thermal expansion: 1.3 x 10-3
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
CH3 [1112-39-6] 25g/Â¥4,500 2kg/Â¥38,500 15kg/inquire
TSCA HMIS: 3-4-1-X

CH3O Si OCH 3 SID4123.1
DIMETHYLDIMETHOXYSILANE, 99+% 120.22 82° 0.8646 1.3708
CH3 (-80°)mp
DMDMOS
C4H12O2Si
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[1112-39-6] 500g/Â¥37,800
TSCA HMIS: 3-4-1-X


SID4125.0
DIMETHYLETHOXYSILANE 104.22 54-5° 0.757 1.3683
C4H12OSi TOXICITY- oral rat, LD50: 5000mg/kg
vapor pressure, 25°: 281mm flashpoint: 15°C (59°F)
CH3 undergoes hydrosilylation reactions
waterproofing agent for space shuttle thermal tiles1.
H Si OC2H5 1. W. Hill et al, Poly. Mat. Sci. Eng., 62, 668, 1990
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
CH3 [14857-34-2] 25g/Â¥12,600 100g/Â¥41,000
TSCA HMIS: 2-4-1-X

SID4210.0
CH 3
DIMETHYLMETHOXYCHLOROSILANE, 90% 124.64 77° 0.95325 1.3865
C3H9ClOSi flashpoint: -9°C (16°F)
CH 3O Si Cl
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[1825-68-9] 25g/Â¥20,700 100g/Â¥67,500
TSCA HMIS: 3-4-1-X
CH 3
SID4236.0
OCH 3 OCH 3
1,3-DIMETHYLTETRAMETHOXY- 226.38 165° 1.010 1.3834
DISILOXANE, 95% flashpoint: 30°C (86°F)
H3C Si O Si CH3
C6H18O5Si2
OCH 3 OCH 3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[18186-97-5] 10g/Â¥12,600 50g/Â¥50,400
HMIS: 3-3-1-X

SID4400.0
CH3(CH2)7 Cl DI-n-OCTYLDICHLOROSILANE 325.44 145°/0.2 0.940
Si C16H34Cl2Si
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH3(CH2)7 Cl [18416-07-4] 25g/Â¥16,200 100g/Â¥52,700
HMIS: 3-2-1-X

SID4401.0
(DI-n-OCTYLMETHYLSILYL)ETHYLDIMETHYL- 391.23 165-6°/0.1 0.859
CHLOROSILANE
CH3
C21H47ClSi2
H3C SiCH2CH2Si Cl
forms bonded phases for reverse phase chromatography
CH3
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[472513-03-7] 25g/Â¥49,500
HMIS: 3-2-1-X




FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
37
Gelest, Inc.


name MW bp/mm (mp) D420 nD20
SID4401.5
(DI-n-OCTYLMETHYLSILYL)ETHYLTRI- 432.06 166-8°/0.1 0.966
CHLOROSILANE
Cl
C19H41Cl3Si2
H3C SiCH2CH2Si Cl
forms bonded phases for reverse phase HPLC
Cl
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
25g/Â¥49,500
HMIS: 3-2-1-X

SID4404.0
1, 3-DI-n-OCTYLTETRAMETHYLDISILAZANE 357.77 160-5°/1 0.826 1.4500
CH3 CH3
C20H47NSi2 flashpoint: >110°C (>230°F)
CH3(CH2)7 Si N Si (CH2)7CH3
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
CH3 H CH3 [69519-51-3] HMIS: 2-1-0-X 10g/Â¥20,700
SID4510.0
DIPHENYLDICHLOROSILANE, 95% 253.20 304-5° 1.2216 1.5819
COMMERCIAL




C12H10Cl2Si (-22°)mp
vapor pressure, 125°: 2mm TOXICITY- ipr mus, LD50: 383mg/kg
Cl
ΔHvap: 15.0 kcal/mole flashpoint: 157°C (314°F)
Si
coefficient of thermal expansion: 0.7 x 10-3 dipole moment: 2.6 debye
Cl
specific heat: 0.30 viscosity, 25°: 4.1 cSt
silicone monomer; forms diol on contact with water
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[80-10-4] 100g/Â¥8,100 2kg/Â¥30,100 20kg/inquire
TSCA HMIS: 3-1-1-X


SID4510.1
DIPHENYLDICHLOROSILANE, 99% 253.20 304-5° 1.2216 1.5819
Cl
C12H10Cl2Si (-22°)mp
Si
TOXICITY- ipr mus, LD50: 383mg/kg
Cl flashpoint: 157°C (314°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[80-10-4] 25g/Â¥4,500 100g/Â¥14,400 2kg/Â¥133,000
TSCA HMIS: 3-1-1-X

SID4525.0
DIPHENYLDIETHOXYSILANE 272.42 167°/15 1.0329 1.5269
OC2H5 C16H20O2Si flashpoint: 175°C (347°F)
Si vapor pressure, 125°: 2mm
OC2H5 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[2553-19-7] 25g/Â¥8,100 100g/Â¥26,100 2kg/Â¥92,800
TSCA HMIS: 2-1-0-X

SID4535.0
DIPHENYLDIMETHOXYSILANE 244.36 161°/15 1.0771 1.5447
OCH 3
COMMERCIAL




C14H16O2Si flashpoint: 121°C (250°F)
Si
viscosity, 25°: 8.4 cSt
OCH 3
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[6843-66-9] 100g/Â¥6,800 2kg/Â¥63,000
TSCA HMIS: 3-1-1-X

SID4552.0
DIPHENYLMETHYLCHLOROSILANE 232.78 295° 1.128 1.5742
C13H13ClSi (-22°C)mp
vapor pressure, 125°: 3mm flashpoint: 141°C (286°F)
ΔHvap: 149 kcal/mole
CH3 viscosity, 25°: 5.3 cSt
Si surface tension: 40.0 dynes/cm thermal conductivity: 0.112 W/m°C
α silylates esters, lactones; precursors to α silyl enolates1.
Cl
1. G. Larson et al, J. Am. Chem. Soc., 103, 2418, 1981.
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[144-79-6] 25g/Â¥8,100 100g/Â¥26,600 2.5kg/Â¥175,000
TSCA HMIS 3-1-1-X

SID4552.5
DIPHENYLMETHYL(DIMETHYLAMINO)SILANE 241.41 98-9°/0.25 1.011
CH3
C15H19NSi
Si
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
N(CH 3)2
[68733-63-1] 25g/Â¥14,400 100g/Â¥46,800
TSCA-L HMIS: 3-3-1-X




PLEASE INQUIRE ABOUT BULK QUANTITIES
38
Gelest, Inc.


name MW bp/mm (mp) D420 nD20
SID4553.0
DIPHENYLMETHYLETHOXYSILANE 242.39 100-2°/0.3 1.018 1.544025
C15H18OSi (-27°)mp




HYDROPHOBIC
CH3
ΔHvap: 14.8 kcal/mole flashpoint: 165°C (329°F)
Si
vapor pressure: 125°: 3mm viscosity, 25°: 6.5 cSt
OC2H5
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[1825-59-8] 10g/Â¥9,900 50g/Â¥39,600
TSCA HMIS: 2-0-0-X


SID4586.0
CH3 1,3-DIPHENYL-1,1,3,3,-TETRAMETHYL- 285.54 96-9°/0.1 0.985 1.5384
DISILAZANE flashpoint: 162°C (324°F)
Si NH
C16H23NSi2
CH3 2
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[3449-26-1] 5.0g/Â¥13,500 25g/Â¥54,000
TSCA-L HMIS: 3-1-1-X


SID4591.0
1,3-DI-n-PROPYLTETRAMETHYLDISILAZANE 217.51 84°/9 0.800 1.4290
C10H27NSi2 flashpoint: 65°C (150°F)
[14579-90-9] HMIS: 3-2-1-X 25g/Â¥63,000

SID4598.0
CH3
DI(p-TOLYL)DICHLOROSILANE, 95% 281.26 225-6°/50 1.10 1.568
Cl C14H14Cl2Si contains 4-4’dimethylbiphenyl
Si forms polymers w/ liquid crystal behavior1.
Cl
1. M. Lee et al, Polymer, 34, 4882, 1993.
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH3
[18414-38-5] 10g/Â¥15,800 50g/Â¥63,000
HMIS: 3-2-1-X

CH3
SID4599.0
DI(p-TOLYL)DIMETHOXYSILANE 272.42 140°/0.5 1.023 1.535525
OCH 3
Si
C16H20O2Si
OCH 3
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[92779-72-1] 25g/Â¥65,700
HMIS: 3-2-1-X
CH3

SID4620.0
DOCOSYLMETHYLDICHLOROSILANE, blend 423.62 218-20°/0.5 0.93
CH3(CH2)20CH2 Cl
C23H48Cl2Si contains C20 to C24 homologs (21-9°)mp
Si flashpoint: 172°C (342°F)
H3C Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[67892-56-2] 50g/Â¥55,800
TSCA HMIS: 3-1-1-X

SID4621.0
CH3(CH2)20CH2 Cl DOCOSYLTRICHLOROSILANE, blend 444.04 210°/0.2 0.94
C22H45Cl3Si (20-8°)mp
Si flashpoint: 200°C (392°F)
contains C20 to C24 homologs
Cl Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[7325-84-0] 25g/Â¥36,000
TSCA HMIS: 3-1-1-X

SID4627.0
CH3(CH2)10CH2 CH3 DODECYLDIMETHYLCHLOROSILANE 262.94 291-3° 0.865 1.445
Si C14H31ClSi
H3C HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl
[66604-31-7] 25g/Â¥24,800
HMIS: 3-2-1-X

SID4628.0
CH3(CH2)10CH2 Cl DODECYLMETHYLDICHLOROSILANE 283.36 124-7°/3 0.955 1.4581
Si C13H28Cl2Si flashpoint: 143°C (289°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
H3C Cl [18407-07-3] 25g/Â¥20,300
TSCA HMIS:3-1-1-X

SID4629.0
DODECYLMETHYLDIETHOXYSILANE 302.57 140°/0.5 0.84525
CH3(CH2)10CH2 OCH 2CH3
C17H38O2Si flashpoint: 152°C (305°F)
Si
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
H3C OCH 2CH3
[60317-40-0] 25g/Â¥23,400
TSCA HMIS: 2-1-0-X




FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
39
Gelest, Inc.

name MW bp/mm (mp) D420 nD20
SID4630.0
DODECYLTRICHLOROSILANE 303.77 120°/3 1.0242 1.4581
C12H25Cl3Si (-30°)mp
CH3(CH2)10CH2SiCl3
flashpoint: 165°C (329°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[4484-72-4] 25g/Â¥6,800 250g/Â¥47,300
TSCA HMIS: 3-1-1-X

SID4632.0
DODECYLTRIETHOXYSILANE 332.60 152-3°/3 0.884225 1.433025
CH3(CH2)10CH2Si(OC2H5)3 C18H40O3Si flashpoint: >110°C (>230°F)
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[18536-91-9] 25g/Â¥11,300 100g/Â¥36,500
TSCA HMIS: 2-1-0-X
SIE4661.0
EICOSYLTRICHLOROSILANE, 95% 415.9 200°/0.5
CH3(CH2)18CH2SiCl3 C20H41Cl3Si flashpoint: 230°C (446°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[18733-57-8] 25g/Â¥72,000
TSCA HMIS: 3-0-1-X
CH3 SIE4892.0
ETHYLDIMETHYLCHLOROSILANE 122.67 91° 0.8756 1.4050
CH3CH2 Si Cl C4H11ClSi flashpoint: -4°C (24°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH3 [6917-76-6] 10g/Â¥10,400 50g/Â¥41,400
HMIS: 3-4-1-X

SIE4896.0
CH3 Cl ETHYLMETHYLDICHLOROSILANE 143.09 100° 1.0630 1.4197
C3H8Cl2Si flashpoint: 2°C (36°F)
Si
dipole moment: 2.32 debye
CH3CH2 Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[4525-44-4] 25g/Â¥13,100 100g/Â¥42,300
TSCA HMIS: 3-4-1-X

SIE4897.0
OSi(CH 3)3
(ETHYLMETHYLKETOXIMINO)TRIMETHYL- 159.30 65°/75 0.82625 1.412525
N SILANE O-(TRIMETHYLSILYL)OXIME-2-BUTANONE
C7H17NOSi
C
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
H3C CH2CH3
[37843-14-4] 10g/Â¥17,600
HMIS: 2-3-1-X
SIE4897.5
CH3CH2
m,p-ETHYLPHENETHYLTRIMETHOXY- 254.40 93-6°/4 0.996 1.477625
SILANE, 95%
C13H22O3Si
component in optical hard coating resins
CH2CH2Si(OMe) 3 HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[259818-29-6] 25g/Â¥43,200
HMIS: 3-2-1-X

SIE4899.0
O
ETHYLTRIACETOXYSILANE 243.28 107-8°/8 1.143 1.4123
OCCH 3 O C8H14O6Si (7-9°)mp
flashpoint: 106°C (223°F)
CH3CH2 Si O CCH3
liquid cross-linker for silicone RTVs
OCCH 3
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
COMMERCIAL




O [17689-77-9] TSCA HMIS: 3-1-1-X 25g/Â¥4,500 2.0kg/Â¥49,000
SIE4901.0
ETHYLTRICHLOROSILANE 163.51 100-1° 1.237 1.426
C2H5Cl3Si (-106°)mp
Cl vapor pressure, 20°: 26mm, 30.4°; 66mm TOXICITY- oral rat, LD50: 1330mg/kg
ΔHvap: 9.0 kcal/mole flashpoint: 27°C (80°F)
CH3CH2 Si Cl
coefficient of expansion: 1.5x10-3 dipole moment: 2.1
viscosity: 0.48 cSt critical temperature: 287°
Cl
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[115-21-9] 25g/Â¥4,500 500g/Â¥13,100 4kg/Â¥61,600
TSCA HMIS: 3-3-1-X

SIE4901.2
ETHYLTRIETHOXYSILANE 192.33 158-9° 0.8963 1.3955
C8H20O3Si (-78°)mp
OC2H5
TOXICITY- oral rat, LD50: 13,720 mg/kg
viscosity: 0.70 cSt flashpoint: 40°C (104°F)
CH3CH2 Si OC2H5
vapor pressure, 50°: 10mm autoignition temperature: 235°C (455°F)
OC2H5 coefficient of thermal expansion: 1.5 x 10-3 specific heat: 0.43/g/°
ΔHvap: 7.8 kcal/mole γc of treated surface: 26.3 dynes/cm
critical temperature: 314°
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[78-07-9] 100g/Â¥15,800 500g/Â¥63,000
TSCA HMIS: 3-2-1-X



PLEASE INQUIRE ABOUT BULK QUANTITIES
40
Gelest, Inc.

name MW bp/mm (mp) D420 nD20
SIE4901.4
OCH 3 ETHYLTRIMETHOXYSILANE 150.25 124-5° 0.9488 1.3838
C5H14O3Si flashpoint: 27°C (80°F)
CH3CH2 Si OCH 3
ΔHcomb: 3425 kcal/mole
viscosity: 0.5 cSt
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
OCH 3




HYDROPHOBIC
[5314-55-6] 25g/Â¥4,500 2kg/Â¥42,000 17kg/inquire
TSCA HMIS: 3-3-1-X




COMMERCIAL
PP1-GC18
8
d1
®

scla GLASSCLAD® 18 0.88
Glas
OCTADECYL FUNCTIONAL SILANE flashpoint: 10°C(50°F)
trol
Con amber liquid
20% in t-BUTYL ALCOHOL and DIACETONE ALCOHOL
γc of treated glass surface: 31 dynes/cm
coefficient of friction of treated glass surface: 0.2-0.3
surface resistivity of treated surface: 1.2 x 1013 ohms
reduces blood protein adsorption1.
1. B. Arkles et al in “Silanes Surfaces & Interfaces� D. Leyden ed, Gordon & Breach, 1986, p91
100g/Â¥8,600 1.5kg/Â¥51,800 15kg/inquire
TSCA HMIS: 2-3-1-X

SIH5840.4
(HEPTADECAFLUORO-1,1,2,2-TETRA- 540.72 197-8° 1.51 1.3410
CH3 HYDRODECYL)DIMETHYLCHLOROSILANE
PERFLUORODECYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE
CF3(CF2)7CH2CH2 Si Cl C H ClF Si
12 10 17
derivatizing agent for fluorous phase synthesis.
CH3
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
[74612-30-9] 5.0g/Â¥17,600 25g/Â¥70,200
HMIS: 3-2-1-X

SIH5840.6
CH3 (HEPTADECAFLUORO-1,1,2,2-TETRA- 561.14 205-7° 1.63
HYDRODECYL)METHYLDICHLOROSILANE (26-7°)mp
CF3(CF2)7CH2CH2 Si Cl C11H7Cl2F17Si
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
Cl
[3102-79-2] 5.0g/Â¥20,300 25g/Â¥81,000
HMIS: 3-2-1-X

SIH5841.0
(HEPTADECAFLUORO-1,1,2,2-TETRA- 581.56 216-8° 1.703 1.3490
HYDRODECYL)TRICHLOROSILANE TOXICITY- oral rat, LD50: >5000 mg/kg
Cl
PERFLUORODECYL-1H,1H,2H,2H-TRICHLOROSILANE
C10H4Cl3F17Si
CF3(CF2)7CH2CH2 Si Cl
γc of treated surfaces: 12 dynes/cm1.
Cl 1. J. Brzoska et al, Langmuir, 10, 4367, 1994
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
[78560-44-8] 5.0g/Â¥16,200 25g/Â¥64,800
TSCA HMIS: 3-2-1-X

SIH5841.2
(HEPTADECAFLUORO-1,1,2,2-TETRA- 610.38 103-6°/3 1.40725 1.3419
OC2H5 HYDRODECYL)TRIETHOXYSILANE
C16H19F17O3Si
CF3(CF2)7CH2CH2 Si OC2H5
hydrolysis in combination with polydimethoxysiloxane gives hard hydrophobic coatings1.
OC2H5 1. T. Oota et al, Jpn. Kokai JP 06,293,782, 1993; CA 122: 136317d, 1995
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[101947-16-4] 5g/Â¥18,000 25g/Â¥72,000
HMIS: 3-2-1-X
SIH5841.5
(HEPTADECAFLUORO-1,1,2,2-TETRA- 568.30 247° 1.54 1.33125
OCH 3
HYDRODECYL)TRIMETHOXYSILANE
CF3(CF2)7CH2CH2 Si OCH 3 C13H13F17O3Si
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
OCH 3
[83048-65-1] 5g/Â¥18,000 25g/Â¥72,000
HMIS: 3-2-1-X

SIH5842.0
F3C (3-HEPTAFLUOROISOPROPOXY)PROPYL- 361.55 85-7°/35 1.497 1.3710
CH2CH2CH2SiCl3 TRICHLOROSILANE
F CO
C6H6Cl3F7OSi
F3C HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
[15538-93-9] 5.0g/Â¥23,400
HMIS: 3-3-1-X

Cl SIH5845.0
n-HEPTYLMETHYLDICHLOROSILANE 213.22 207-8° 0.978 1.439625
CH3(CH2)6 Si CH3 C8H18Cl2Si flashpoint: 66°C (150°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
Cl [18395-93-2] 25g/Â¥31,500
TSCA HMIS: 3-2-1-X

FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
41
Gelest, Inc.
name MW bp/mm (mp) D420 nD20
SIH5846.0
n-HEPTYLTRICHLOROSILANE 233.64 211-2° 1.087 1.443925
CH3(CH2)6SiCl3 C7H15Cl3Si flashpoint: 64°C (146°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
[871-41-0] 25g/Â¥31,500
HMIS: 3-2-1-X

SIH5918.0
HEXADECAFLUORODODEC-11-ENE-1-YL- 589.61 94-6°/0.6 1.626 1.3713
TRICHLOROSILANE
H2C CHCF 2(CF2)6CF2CH2CH2SiCl3 C12H7Cl3F16Si
forms self-assembled monolayers/ reagent for immobilization of DNA
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
5.0g/Â¥81,000
HMIS: 3-1-1-X

SIH5920.0
HEXADECYLTRICHLOROSILANE, 95% 359.88 202°/10 0.98 1.4592
C16H33Cl3Si flashpoint: 154°C (309°F)
CH3(CH2)14CH2SiCl3 γc of treated surfaces: 21 dynes/cm
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
[5894-60-0] 25g/Â¥5,400 100g/Â¥17,600
TSCA HMIS: 3-1-1-X

SIH5922.0
HEXADECYLTRIETHOXYSILANE, 95% 388.71 160-1°/1 0.888 1.4370
CH3(CH2)14CH2Si(OC2H5)3 C22H48O3Si (-9°)mp
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[16415-13-7] 25g/Â¥9,900 100g/Â¥32,400
HMIS: 2-1-1-X

SIH5925.0
HEXADECYLTRIMETHOXYSILANE, 95% 346.63 155°/0.2 0.89
C H42O3Si (-1°)mp
CH3(CH2)14CH2Si(OCH 3)3 19 viscosity: 7 cSt
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[16415-12-6] 25g/Â¥8,100 2kg/Â¥102,000 16kg/inquire
TSCA HMIS: 2-2-1-X
SIH6102.0
1,1,3,3,5,5-HEXAMETHYLCYCLOTRISILAZANE 219.51
186-8° 0.922 1.4448
C6H21N3Si3 (-10°)mp
flashpoint: 61°C (142°F)
ΔHform: 132 kcal/mole
H dipole moment: 0.92
CH3 viscosity, 20°: 1.7 cSt dielectric constant, 1000Hz: 2.57
N
H H3C
modifies positive resists for O2 plasma resistance1.
N Si CH3 polymerizes to polydimethylsilazane oligomer in presence of Ru/H22.
N Si silylation reagent for diols3.
H3C
1. E. Babich et al, Microelectron. Eng., 11, 503, 1990.
Si H CH3
2. Y. Blum et al, US Pat., 4,216,383, 1986; US Pat. 4,788,309, 1988.
H3C
COMMERCIAL




3. L. Birkofer et al, J. Orgmet. Chem., 187, 21, 1980.
see also SID4074.4
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[1009-93-4] 25g/Â¥12,200 100g/Â¥39,600 2kg/Â¥223,000
TSCA HMIS: 2-2-1-X
SIH6110.0 (HMDS-SG)
HEXAMETHYLDISILAZANE 161.39 126-7° 0.7742 1.4080
C6H19NSi2 HMDS, HMDZ TOXICITY- oral rat, LD50: 850mg/kg
H CH3 viscosity: 0.90 cSt TOXICITY- ipr mus, LDLo: 650mg/kg
CH3
vapor pressure, 50°: 50mm flashpoint: 14°C (57°F)
CH3 Si N Si CH3 ΔHvap: 8.3 kcal mole
pKa: 7.55
surface tension: 18.2 dynes/cm dielectric constant, 1000 Hz: 2.27
CH3 CH3 specific wetting surface: 485 m2/g
Ea, reaction w/SiO2 surface: 17.6 kcal/mole
versatile silylation reagent; creates hydrophobic surfaces
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[999-97-3] 1L/Â¥8,000
TSCA HMIS: 2-4-1-X

SIH6110.1 (HMDS-EG)
H CH3 HEXAMETHYLDISILAZANE, 99% 161.39 126-7° 0.7742 1.4080
CH3
C6H19NSi2 HMDS, HMDZ TOXICITY- ipr mus, LDLo: 650mg/kg
CH3 Si N Si CH3 <5ppm chloride
photoresist adhesion promoter
CH3 CH3 HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[999-97-3] 1L/Â¥12,000
TSCA HMIS: 2-4-1-X
SIH6165.6
CH3(CH2)4CH2 Cl HEXYLMETHYLDICHLOROSILANE 199.19 204-6° 0.993 1.4390
Si C7H16Cl2Si flashpoint: 85°C (185°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH3 Cl [14799-94-1] 25g/Â¥13,100
TSCA HMIS: 3-2-1-X


PLEASE INQUIRE ABOUT BULK QUANTITIES
42
Gelest, Inc.
name MW bp/mm (mp) D420 nD20
SIH6167.0
CH3(CH2)4CH2 Cl HEXYLTRICHLOROSILANE 219.61 191-2° 1.107 1.3473
C6H13Cl3Si flashpoint: 85°C (185°F)
Si
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl Cl [928-65-4] 25g/Â¥6,300 100g/Â¥20,700
TSCA HMIS: 3-2-1-X




HYDROPHOBIC
SIH6167.5 (HTS-E)
HEXYLTRIETHOXYSILANE 248.44 115°/18 0.860 1.40825
CH3(CH2)4CH2Si(OC2H5)3 C12H28O3Si flashpoint: 95°C (203°F)
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[18166-37-5] 25g/Â¥13,100 100g/Â¥42,300
HMIS: 2-1-1-X




COMMERCIAL
SIH6168.5 (HTS-M)
HEXYLTRIMETHOXYSILANE 206.35 202-3° 0.91125 1.4070
CH3(CH2)4CH2Si(OCH 3)3 C9H22O3Si flashpoint: 62°C (144°F)
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[3069-19-0] 50g/Â¥13,100 2kg/Â¥63,000
TSCA HMIS: 3-2-1-X

SII6452.5
CH3
H3C ISOBUTYLDIMETHYLCHLOROSILANE 150.72 131-3° 1.418725
CHCH 2Si Cl C6H15ClSi flashpoint: 18°C (64°F)
H3C HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH3 [60090-96-2] 10g/Â¥11,700
HMIS:3-4-1-X

SII6452.8
CH3
H3C ISOBUTYLMETHYLDIMETHOXYSILANE 162.30 63°/40 0.851 1.3962
CHCH 2Si OCH 3 C7H18O2Si flashpoint: 38°C (101°F)
H3C HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
OCH 3 [18293-82-8] 25g/Â¥24,300
HMIS: 2-3-1-X

SII6453.0
Cl
H3C ISOBUTYLTRICHLOROSILANE 191.56 140° 1.162 1.4335
CHCH 2Si Cl C4H9Cl3Si flashpoint: 37°C (100°F)
H3C HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl [18169-57-8] 25g/Â¥4,500 100g/Â¥15,300
TSCA HMIS: 3-3-1-X

SII6453.5
ISOBUTYLTRIETHOXYSILANE 220.38 190-1° 0.9104 1.3908
OC2H5
H3C C10H24O3Si TOXICITY- oral rat, LD50: >5000mg/kg
CHCH 2Si OC2H5 flashpoint: 63°C (145°F)
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
H3C
OC2H5




COMMERCIAL
[17980-47-1] 25g/Â¥4,500 2kg/Â¥41,400 16kg/inquire
TSCA HMIS: 2-2-1-X


SII6453.7
ISOBUTYLTRIMETHOXYSILANE 178.30 154° 0.933 1.3960
OCH 3 flashpoint: 42°C (107°F)
TRIMETHOXYSILYL-2-METHYLPROPANE
H3C
C7H18O3Si TOXICITY- oral rat,LD50: >2000mg/kg
CHCH 2Si OCH 3 viscosity: 0.8 cSt
H3C branched structure provides hydrophobic surface treatments for architectural coatings
OCH 3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[18395-30-7] 50g/Â¥4,500 2kg/Â¥38,500 17kg/inquire
TSCA HMIS: 3-2-1-X


SII6456.6
CH3 CH3 CH3
ISOOCTYLDIMETHYLCHLOROSILANE 206.83 83-5°/10 0.852
CH3CCH2CHCH 2SiCl C10H23ClSi
[79957-95-2] HMIS: 3-3-1 25g/Â¥32,400
CH3 CH3
SII6457.0
ISOOCTYLTRICHLOROSILANE 247.67 117°/50 1.0684 1.4510
CH3 CH3
flashpoint: 85°C (185°F)
1-TRICHLOROSILYL-2,4,4-TRIMETHYLPENTANE
C8H17Cl3Si
CH3CCH2CHCH 2SiCl3
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH3 [18379-25-4] 25g/Â¥9,500 100g/Â¥30,600
TSCA HMIS: 3-2-1-X

SII6458.0
CH3 CH3 ISOOCTYLTRIMETHOXYSILANE 234.41 90°/10 0.887 1.4176
C11H26O3Si flashpoint: 52°C (126°F)
CH3CCH2CHCH 2Si(OCH 3)3 viscosity: 2 cSt. autoignition temp.: 310°
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
CH3 [34396-03-7] 25g/Â¥5,400 100g/Â¥17,600 2kg/Â¥66,500
TSCA HMIS: 3-2-1-X


FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
43
Gelest, Inc.
name MW bp/mm (mp) D420 nD20
SII6462.0
CH3 ISOPROPYLDIMETHYLCHLOROSILANE 136.69 114° 0.873 1.4138
H3C
C5H13ClSi flashpoint: 15°C (59°F)
CHSi Cl see also SID4065.0
H3C HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH3 [3634-56-8] 25g/Â¥20,300 100g/Â¥65,700
HMIS: 3-4-1-X

SIM6492.4
3-(p-METHOXYPHENYL)PROPYLMETHYL- 263.24 115-6°/0.3 1.13
Cl
DICHLOROSILANE flashpoint: >110°C (>230°F)
CH3O CH2CH2CH2Si CH3
C11H16Cl2OSi
Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
store <5° 25g/¥28,800
HMIS: 3-1-1-X

SIM6492.5
3-(p-METHOXYPHENYL)PROPYLTRICHLORO- 283.66 128-9°/1 1.226
Cl
CH2CH2CH2Si Cl SILANE flashpoint: >110°C (>230°F)
CH3O
C10H13Cl3OSi
Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[163155-57-5] 25g/Â¥28,800
HMIS: 3-1-1-X

SIM6492.8
CH3O
(1-METHOXY-2-PROPOXY)TRIMETHYLSILANE 162.30 132° 0.83 1.3965
H2C CH3
C7H18O2Si (-40°)mp
CH
flashpoint: 20°C (68°F)
O
viscosity: 2 cSt
H3C Si CH3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[55816-62-1] 25g/Â¥28,800
HMIS: 3-2-1-X
CH3

SIM6511.0
(p-METHYLPHENETHYL)METHYLDICHLORO- 233.21 103-5°/2 1.1 1.510025
Cl SILANE, 95% flashpoint: 95°C (203°F)
H3C CH2CH2
(p-TOLYLETHYL)METHYLDICHLOROSILANE
Si C10H14Cl2Si α: β � 40:60
H3C Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture
[63126-87-4] 50g/Â¥39,600
TSCA-L HMIS: 3-1-1-X

CH3 SIM6512.5
(2-METHYL-2-PHENYLETHYL)METHYL- 233.21 104-5°/9 1.1165 1.5152
CH DICHLOROSILANE
METHYL(α-METHYLPHENETHYL)DICHLOROSILANE
CH2
C10H14Cl2Si
Cl
Si HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture
CH3 Cl [13617-28-2] 25g/Â¥18,900 100g/Â¥61,400
TSCA HMIS: 3-1-1-X

O SIM6519.0
METHYLTRIACETOXYSILANE, 95% 220.25 87-8°/3 1.175 1.4083
OCCH 3 O
C7H12O6Si (40°)mp
CH3 Si O CCH3 vapor pressure, 94°: 9mm flashpoint: 85°C (185°F)
most common crosslinker for condensation cure silicone RTV’s
OCCH 3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[4253-34-3] 50g/Â¥8,600 2kg/Â¥112,000 18kg/inquire
TSCA HMIS: 3-2-1-X
O
COMMERCIAL




SIM6520.0
METHYLTRICHLOROSILANE 149.48 66.4° 1.275 1.4110
CH3Cl3Si (-78°)mp
H3C Cl vapor pressure, 13.5°: 100mm TOXICITY- ihl rat,LDLo: 450ppm/4H
ΔHvap: 7.4 kcal/mole flashpoint: -15°C (5°F)
Si
viscosity: 0.46 cSt autoignition temperature: 395°
Cl Cl critical pressure: 39 atm critical temperature: 243°C
specific heat: 0.22 cal/g/° ionization potential: 11.36 eV
coefficient of thermal expansion: 1.3 x 10-3 surface tension: 20.3 dynes/cm
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture
[75-79-6] 25g/Â¥4,500 500g/Â¥10,800 20kg/inquire*+container
TSCA HMIS: 3-4-2-X
*zDR-S-019 or zCYL-S-019 required

SIM6520.1
H3C Cl METHYLTRICHLOROSILANE, 99% 149.48 66.4° 1.275 1.4110
CH3Cl3Si (-78°)mp
Si
in combination w/H2 forms SiC by CVD1.
Cl Cl 1. A. Josiek et al, Chem. Vap. Dep., 2, 17, 1996
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture
[75-79-6] 25g/Â¥16,200 500g/Â¥113,000
TSCA HMIS: 3-4-2-X



PLEASE INQUIRE ABOUT BULK QUANTITIES
44
Gelest, Inc.
name MW bp/mm (mp) D420 nD20
SIM6555.0
METHYLTRIETHOXYSILANE 178.30 142° 0.8948 1.3832
H3C OC2H5
C7H18O3Si TOXICITY- oral rat, LD50: 12,500mg/kg
Si vapor pressure, 25°: 6mm flashpoint: 30°C (86°F)
dipole moment: 1.72 debye autoignition temperature: 225°C (437°F)
C2H5O OC2H5
ΔHcomb: 1831 kcal/mole
viscosity: 0.6 cSt




HYDROPHOBIC
COMMERCIAL
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[2031-67-6] 25g/Â¥4,500 2.0kg/Â¥35,000 15kg/inquire
TSCA HMIS: 1-3-1-X

SIM6560.0 (D031A)
METHYLTRIMETHOXYSILANE 136.22 102-3° 0.955 1.3696
H3C OCH 3 C4H12O3Si (-78°)mp
TOXICITY- oral rat, LD50: 12,500mg/kg
Si viscosity: 0.50 cSt flashpoint: 8°C (46°F)
CH3O OCH 3 dipole moment: 1.60 debye autoignition temperature: 255°
ΔHcomb: 1142 kcal/mole
intermediate for coating resins
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[1185-55-3] 25g/Â¥4,500 2.0kg/Â¥22,400 17kg/inquire
TSCA HMIS: 3-4-1-X

SIM6560.1
METHYLTRIMETHOXYSILANE, 99+% 136.22 102-3° 0.955 1.3696
H3C OCH 3 C4H12O3Si (-78°)mp
Si TOXICITY- oral rat, LD50: 12,500mg/kg
viscosity: 0.50 cSt flashpoint: 8°C(46°F)
CH3O OCH 3
dipole moment: 1.60 debye autoignition temperature: 255°
ΔHcomb: 1142 kcal/mole
intermediate for coating resins
[1185-55-3] TSCA HMIS: 3-4-1-X 100g/Â¥41,000
OCH 2CH2CH3 SIM6579.0
METHYLTRI-n-PROPOXYSILANE 220.38 83-4°/13 0.878 1.4085
H3C Si OCH 2CH2CH3
C10H24O3Si flashpoint: 60°C (130°F)
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OCH 2CH2CH3
[5581-66-8] 25g/Â¥21,600
TSCA HMIS: 2-2-1-X

SIM6585.0
OCH 2CH2OCH 3
METHYLTRIS(METHOXYETHOXY)SILANE 268.38 145°/15 1.045 1.4178
H3C Si OCH 2CH2OCH 3 C10H24O6Si
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OCH 2CH2OCH 3 [17980-64-2] TSCA 25g/Â¥14,400
HMIS: 3-1-0-X

SIM6590.0
METHYLTRIS(METHYLETHYLKETOXIME)- 301.46 110-1°/2 0.982 1.454825




COMMERCIAL
H3C SILANE, 95% METHYLTRIS(2-BUTANONEOXIME)SILANE (-22°)mp
C N O Si CH3 C13H27N3O3Si TOXICITY- oral rat, LD50: 2000-3000mg/kg
CH3CH2 3 flashpoint: 90°C (194°F)
neutral crosslinker for condensation cure silicones
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[22984-54-9] 100g/Â¥6,800 2kg/Â¥72,000
TSCA HMIS: 2-2-1-X

CH2SiCl3 SIN6596.0
(1-NAPTHYLMETHYL)TRICHLOROSILANE 275.64 150-1°/7 1.3112 1.5974
C11H9Cl3Si
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[17998-59-3] 10g/Â¥52,200
HMIS: 3-2-1-X


SIN6597.0
Si(OCH 3)3
1-NAPTHYLTRIMETHOXYSILANE 248.35 150°/2 1.5562
C13H16O3Si (33-5°)mp
employed in high refractive index surface modification
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[18052-76-1] 5.0g/Â¥81,000
HMIS: 3-2-1-X

SIN6597.3
CH3
NONAFLUOROHEXYLDIMETHYLCHLORO- 340.69 162-4° 1.3422
CF3CF2CF2CF2CH2CH2Si Cl SILANE
C8H10ClF9Si
CH3
10g/Â¥20,300
HMIS: 3-3-1-X

Cl SIN6597.6
NONAFLUOROHEXYLTRICHLOROSILANE 381.53 70-2°/15 1.542
CF3CF2CF2CF2CH2CH2Si Cl
C6H4Cl3F9Si
Cl [78560-47-1] TSCA HMIS: 3-2-1-X 10g/Â¥12,200 50g/Â¥48,600
FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
45
Gelest, Inc.
name MW bp/mm (mp) D420 nD20
OCH 2CH3 SIN6597.65
OCH 2CH3 NONAFLUOROHEXYLTRIETHOXYSILANE 410.35
CF3CF2CF2CF2CH2CH2Si
C12H19F9O3Si
OCH 2CH3 [102390-98-7] 25g/Â¥33,300
TSCA HMIS: 2-2-1-X

SIN6597.7
OCH 3
NONAFLUOROHEXYLTRIMETHOXYSILANE 368.27 68-9°/15 1.335 1.3376
C9H13F9O3Si
CF3CF2CF2CF2CH2CH2Si OCH 3
γc of treated surface: 23 dynes/cm
OCH 3
[85877-79-8] TSCA HMIS: 3-2-1-X 10g/Â¥14,400 50g/Â¥57,600
SIN6598.0
p-NONYLPHENOXYPROPYLDIMETHYL- 355.04 181°/0.75 0.963 1.4925
CH3
CHLOROSILANE, 90%
CH3(CH2)8 OCH 2CH2CH2Si Cl
C20H35CIOSi
CH3
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
10g/Â¥40,500
HMIS: 3-1-1-X

SIO6615.0
n-OCTADECYLDIMETHYLCHLOROSILANE 347.10 159°/0.1 0.85629 1.499829
COMMERCIAL




CH3 (28-30°)mp
DIMETHYL-n-OCTADECYLCHLOROSILANE
C20H43ClSi contains 5-10% C18 isomers flashpoint: 201°C (394°F)
CH3(CH2)16CH2 Si Cl
employed in bonded HPLC reverse phases1.
1. S. Wise et al in “Silanes Surfaces & Interfaces� D. Leyden ed., Gordon & Breach, 1986, p349.
CH3
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[18643-08-8] 25g/Â¥7,200 2kg/inquire
TSCA HMIS: 3-1-1-X
SIO6615.1
CH3
n-OCTADECYLDIMETHYLCHLOROSILANE, 97% 347.10 159°/0.1
(28-30°)mp
DIMETHYL-n-OCTADECYLCHLOROSILANE
CH3(CH2)16CH2 Si Cl
C20H43ClSi contains 3-6% C18 isomers flashpoint: 201°C (394°F)
CH3 HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[18643-08-8] 25g/Â¥14,400 100g/Â¥46,800
TSCA HMIS: 3-1-1-X
SIO6615.2
COMMERCIAL




CH3
n-OCTADECYLDIMETHYLCHLOROSILANE, 347.10 159°/0.1 0.854
70% in toluene flashpoint: 5°C (41°F)
CH3(CH2)16CH2 Si Cl
C20H43ClSi
CH3 HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[18643-08-8] 25g/Â¥6,000 2kg/Â¥inquire
TSCA HMIS: 3-3-1-X
SIO6617.0
CH3 n-OCTADECYLDIMETHYL(DIMETHYLAMINO)- 355.72 160°/0.1
SILANE contains 5-10% C18 isomers
CH3(CH2)16CH2 Si N(CH 3)2 C22H49NSi
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
CH3
[76328-77-3] 10g/Â¥18,000 50g/Â¥72,000
TSCA HMIS: 3-3-1-X

SIO6618.0
CH3 n-OCTADECYLDIMETHYLMETHOXYSILANE 342.68 184-6°/0.2 0.8325 1.444
C21H46OSi contains 5-10% C18 isomers
CH3(CH2)16CH2 Si OCH 3 employed in SAM resist 1.
1. T. Oh et al, Mol. Cryst. Liq. Cryst. Sci. A, 337, 7, 1999.
CH3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[71808-65-6] 25g/Â¥22,100 100g/Â¥73,800
TSCA HMIS: 2-1-0-X

SIO6624.0
n-OCTADECYLMETHOXYDICHLORO- 383.51 144-7°/1.5 0.9425 1.452
Cl
SILANE, 95%
C19H40Cl2OSi
CH3(CH2)16CH2 Si OCH 3
maintains reactivity of octadecyltrichlorosilane, but with reduced HCl byproduct
Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
25g/Â¥17,600 100g/Â¥57,200
HMIS: 3-1-1-X
SIO6625.0
Cl
n-OCTADECYLMETHYLDICHLOROSILANE 367.52 185°/2.5 0.930
C19H40Cl2Si contains 5-10% C18 isomers (24-6°)mp
CH3(CH2)16CH2 Si CH3
flashpoint: 185°C (365°F)
Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[5157-75-5] 25g/Â¥6,700 500g/Â¥86,800
TSCA HMIS: 3-1-1-X
SIO6627.0
OC2H5
n-OCTADECYLMETHYLDIETHOXYSILANE 386.73 197°/2 0.852 1.4407
C23H50O2Si contains 5-10% C18 isomers flashpoint: >110°C (>230°F)
CH3(CH2)16CH2 Si CH3
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OC2H5 [67859-75-0] 25g/Â¥14,400
TSCA HMIS: 2-1-0-X


PLEASE INQUIRE ABOUT BULK QUANTITIES
46
Gelest, Inc.



name MW bp/mm (mp) D420 nD20
SIO6629.0
n-OCTADECYLMETHYLDIMETHOXYSILANE 358.68 190°/3 0.85 1.4427
OCH 3




HYDROPHOBIC
C21H46O2Si contains 5-10% C18 isomers (17-18°)mp
flashpoint: >110°C (>230°F)
CH3(CH2)16CH2 Si CH3
autoignition temp: 225°
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OCH 3
[70851-50-2] 25g/Â¥23,400 100g/Â¥76,100
TSCA HMIS: 3-1-0-X


SIO6640.0
n-OCTADECYLTRICHLOROSILANE, 95% 387.93 160-2°/3 0.95022 1.4602
C18H37Cl3Si contains 5-10% C18 isomers (22°)mp




COMMERCIAL
flashpoint: 189°C (372°F)
Cl provides lipidophilic surface coatings
employed in patterning and printing of electroactive molecular films1,2.
CH3(CH2)16CH2 Si Cl see also SIO6624.0
1. Z. Huan et al, Synth. Met., 85, 1375, 1997.
Cl 2. N. Jeon et al, Langmuir, 13, 3382, 1997.
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[112-04-9] 25g/Â¥4,500 1kg/Â¥50,400 15kg/inquire
TSCA HMIS: 3-1-1-X

SIO6640.1
Cl n-OCTADECYLTRICHLOROSILANE 387.93 160-2°/3 0.95022 1.4602
C18H37Cl3Si contains <3% C18 isomers (22°)mp
CH3(CH2)16CH2 Si Cl highest concentration of terminal silane substitution
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl [112-04-9] 25g/Â¥8,600 100g/Â¥27,900
TSCA HMIS: 3-1-1-X

SIO6642.0
OC2H5 n-OCTADECYLTRIETHOXYSILANE, 95% 416.76 165-9°/0.2 0.87 1.4386
OC2H5 C24H52O3Si contains 5-10% C18 isomers (10-12°)mp
CH3(CH2)16CH2 Si
forms hydrophobic, oleophilic coatings flashpoint: >150°C (>302°F)
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OC2H5
[7399-00-0] 25g/Â¥9,800 100g/Â¥31,900
HMIS: 2-1-0-X

SIO6645.0
n-OCTADECYLTRIMETHOXYSILANE, 95% 374.68 170°/1 0.885 1.439




COMMERCIAL
OCH 3 C21H46O3Si contains 5-10% C18 isomers (13-17°)mp
see also SIH5925.0 TOXICITY- oral rat, LD50: >5000mg/kg
CH3(CH2)16CH2 Si OCH 3 forms clear, ordered, films w/ tetramethoxysilane1. flashpoint: 140°C (284°F)
1. A. Shimjima et al, J. Am. Chem. Soc., 120, 4258, 1998.
OCH 3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[3069-42-9] 25g/Â¥6,800 2kg/Â¥182,000
TSCA HMIS: 2-1-1-X

SIO6698.0
H 3C CH 3
CH 3 OCTAMETHYLCYCLOTETRASILAZANE 292.68 225° 0.95022 1.45825
Si H
HN Si C8H28N4Si4 (97°)mp
N
ΔHform: 188 kcal/mole
CH 3 flashpoint: 66°C (150°F)
CH 3
forms α-Si3N4 by ammonia thermal synthesis1.
N
Si N
H 1. S. Schaible et al, Applied Organomet. Chem., 7, 53, 1993
Si H
CH 3 CH 3 CH 3 HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[1020-84-4] 25g/Â¥11,300 100g/Â¥36,500
TSCA HMIS: 2-2-1-X

H3C CH3 SIO6710.5
CH n-OCTYLDIISOPROPYLCHLOROSILANE 262.94 95-9°/0.5 0.875 1.4550
C14H31ClSi flashpoint: >110°C (>230°F)
CH3(CH2)6CH2 Si Cl
reagent for preparation of HPLC stationary phases w/high stability and efficiency1.
CH 1. J. Kirkland et al, J. Chrom. Sci., 32, 473, 1994.
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
CH3
H3C
[117559-37-2] 10g/Â¥24,800
HMIS: 3-1-1-X

H3C CH3 SIO6710.7
CH n-OCTYLDIISOPROPYL(DIMETHYLAMINO)- 271.57 105°/0.7 0.833 1.4560
SILANE
CH3(CH2)6CH2 Si N(CH 3)2
C16H37NSi
CH HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[151613-25-1] 25g/Â¥106,000
TSCA HMIS: 3-2-1-X
CH3
H3C


FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
47
Gelest, Inc.
name MW bp/mm (mp) D420 nD20
SIO6711.0
CH3
n-OCTYLDIMETHYLCHLOROSILANE 206.83 222-5° 0.794 1432825
C10H23ClSi flashpoint: 97°C (207°F)
CH3(CH2)6CH2 Si Cl
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH3 [18162-84-0] 25g/Â¥11,700 100g/Â¥38,300
TSCA HMIS: 3-1-1-X

CH3 SIO6711.1
OCTYLDIMETHYLMETHOXYSILANE 202.42 221-223° 0.813 1.4230
CH3(CH2)6CH2 Si OCH 3 C H OSi flashpoint: 82°C(181°F)
11 26
[93804-29-6] HMIS: 3-2-1-X 25g/Â¥35,600
CH 3
SIO6711.3
CH3
n-OCTYLDIMETHYL(DIMETHYLAMINO)SILANE 215.45 94-6°/10 0.8025
CH3(CH2)6CH2 Si N(CH 3)2 C12H29NSi flashpoint: 69°C (156°F)
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
CH3 [2530-86-1] 25g/Â¥22,100
HMIS: 3-2-1-X

SIO6712.0
CH3(CH2)6CH2 n-OCTYLMETHYLDICHLOROSILANE 227.25 94°/6 0.9761 1.4440
Cl
C9H20Cl2Si flashpoint: 98°C (209°F)
Si
H3C HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl [14799-93-0] 25g/Â¥8,600 500g/Â¥73,800
TSCA HMIS: 3-2-1-X

SIO6712.2
CH3(CH2)6CH2 OC2H5 n-OCTYLMETHYLDIETHOXYSILANE 246.47 80-2°/2 0.8478 1.4190
C13H30O2Si flashpoint: >110°C (>230°F)
Si
H3C HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OC2H5 [2652-38-2] 25g/Â¥9,000 100g/Â¥29,300
HMIS: 2-2-0-X

SIO6712.4
OCH 3
CH3(CH2)6CH2 n-OCTYLMETHYLDIMETHOXYSILANE 218.42 87-9°/5 0.858 1.4190
Si C11H26O2Si flashpoint: 94°C(201°F)
OCH 3 [85712-15-8] HMIS: 3-2-1-X 25g/Â¥12,600 100g/Â¥41,000
H3C
SIO6713.0
Cl n-OCTYLTRICHLOROSILANE 247.67 224-6° 1.0744 1.4490
C8H17Cl3Si flashpoint: 96°C (204°F)
CH3(CH2)6CH2 Si Cl vapor pressure, 140°: 2mm
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl [5283-66-9] 25g/Â¥4,500 2.0kg/Â¥64,000
TSCA HMIS: 3-1-1-X

SIO6715.0
n-OCTYLTRIETHOXYSILANE 276.48 98-9°/2 0.8750 1.4160
C14H32O3Si (<-40°)mp
COMMERCIAL




OC2H5 viscosity: 1.9 cSt flashpoint: 100°C (212°F)
vapor pressure, 75°: 1mm
CH3(CH2)6CH2 Si OC2H5 may be formulated to stable water emulsions1.
1. R. Depasquale et al, US Pat. 4,648,904, 1987.
OC2H5 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[2943-75-1] 50g/Â¥4,500 2.0kg/Â¥72,000 15kg/inquire
TSCA HMIS: 2-1-0-X

SIO6715.5
n-OCTYLTRIMETHOXYSILANE 234.41 191-2° 0.907 1.417
OCH 3
C11H26O3Si flashpoint: 68°C (154°F)
vapor pressure, 75°: 0.1mm
CH3(CH2)6CH2 Si OCH 3
see also- SII6458.0 ISOOCTYLTRIMETHOXYSILANE
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OCH 3
[3069-40-7] 25g/Â¥6,300 2.0kg/Â¥66,500
TSCA HMIS: 3-2-1-X

SIP6717.0
O CH3 CH3 1,1,1,3,3-PENTAMETHYL-3-ACETOXY- 206.39 149-50° 0.90 1.388725
CH3 DISILOXANE flashpoint: 40°C (104°F)
CH3C O Si O Si
C7H18O3Si2
CH3 CH3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[70693-47-9] 10g/Â¥15,300 50g/Â¥61,200
TSCA HMIS: 2-2-1-X

SIP6720.0
Cl PENTYLTRICHLOROSILANE 209.59 171-2° 1.142 1.4456
AMYLTRICHLOROSILANE mixed isomers flashpoint: 61°C (142°F)
C5H11Cl3Si viscosity: 1.1 cSt.
C5H11Si Cl
specific heat: 0.35 cal/g/°
Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[107-72-2] 25g/Â¥18,900
TSCA HMIS: 3-3-1-X



PLEASE INQUIRE ABOUT BULK QUANTITIES
48
Gelest, Inc.
name MW bp/mm (mp) D420 nD20
SIP6720.2
OC2H 5 PENTYLTRIETHOXYSILANE 234.41 95-6°/1.3 0.895 1.4059
AMYLTRIETHOXYSILANE mixed isomers flashpoint: 68°C (154°F)
C5H 11Si OC2H 5 C11H26O3Si viscosity: 2.1 cSt
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OC2H 5
[2761-24-2] 25g/Â¥23,400
TSCA HMIS: 2-2-1-X




HYDROPHOBIC
SIP6720.5
PERFLUORODODECYL-1H,1H,2H,2H-TRIETHOXY- 710-810 157-198°/1.5
SILANE -PERFLUOROTETRADECYL-1H,1H,2H,2H- (70-85°)mp
TRIETHOXYSILANE MIXTURE, 80% (contains ~ 5% SIH5841.2, balance higher homologs)
for the preparation of low surface energy substrates
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
5.0g/Â¥54,000
HMIS: 2-1-1-X
SIP6720.7
PERFLUOROOCTYLPHENYLTRICHLOROSILANE 629.60 67-9°/3
C14H4Cl3F17Si thermally stable to >300°
C8F17 SiCl3 contact angle treated glass surface, water: 115°.1
1.Y. Kondo, J. Oleoscience, 53, 143, 2004
[753025-21-7] HMIS: 3-1-1-X 1.0g/Â¥104,000
SIP6720.8
PHENETHYLDIISOPROPYLCHLOROSILANE, 254.87 105-9°/0.3 0.97
iC3H7
C8H22ClSi contains α,β-isomers
CH2
CH2 Si Cl
[151613-24-4] TSCA HMIS: 3-2-1-X 5.0g/Â¥54,000
iC3H7
SIP6721.0
PHENETHYLDIMETHYLCHLOROSILANE 198.77 56°/0.2 0.999 1.5185
contains α,β-isomers
C10H15ClSi flashpoint: 70°C (158°F)
see also SIP6724.7
CH3
CH2
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH2 Si Cl
[17146-08-6] 50g/Â¥72,000
TSCA HMIS: 3-2-1-X
CH3
SIP6721.2
PHENETHYLDIMETHYL(DIMETHYLAMINO)- 207.39 109°/2 0.890
contains α,β-isomers
SILANE
CH3 C12H21NSi
CH2
CH2 Si N(CH 3)2 HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[181231-68-5] 10g/Â¥49,500
TSCA-L HMIS: 3-2-1-X
CH3
SIP6721.5
PHENETHYLMETHYLDICHLOROSILANE 219.19 99°/6 1.127 1.5120
flashpoint: 80°C (176°F)
METHYL(PHENETHYL)DICHLOROSILANE
Cl
contains α,β-isomers
C9H12Cl2Si
CH2
CH2 Si CH3 HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[17146-08-6] TSCA HMIS: 3-2-1-X 25g/Â¥16,200 100g/Â¥52,700
Cl

SIP6722.0
PHENETHYLTRICHLOROSILANE 239.60 93-6°/3 1.240 1.5185
C8H9Cl3Si contains α,β-isomers TOXICITY- oral rat, LD50: 2830mg/kg
Cl
flashpoint: 91°C (196°F)
CH2
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH2 Si Cl
[940-41-0] 25g/Â¥10,800 100g/Â¥35,100
TSCA HMIS: 3-1-1-X
Cl


COMMERCIAL
SIP6722.6
PHENETHYLTRIMETHOXYSILANE 226.35 95-6°/2 1.037 1.4753
contains α,β-isomers
C11H18O3Si flashpoint: 109°C (228°F)
OCH 3
CH2
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
CH2 Si OCH 3
[49539-88-0] 25g/Â¥18,900 100g/Â¥61,200 2kg/Â¥147,000
TSCA HMIS: 3-1-1-X
OCH 3
SIP6723.0
m-PHENOXYPHENYLDIMETHYLCHLORO- 262.81 102-6°/1 1.1125 1.560325
CH3 SILANE, 95% contains other isomers
C14H15ClOSi
O Si Cl
end-capper for low-temperature lubricating fluids1.
CH3
1. M. Gardos, ASLE Transactions, 18, 31, 1972.
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
5.0g/Â¥40,100
HMIS: 3-2-1-X

SIP6723.2
CH3 3-PHENOXYPROPYLDIMETHYLCHLOROSILANE 228.78 90-2°/0.25
C11H17ClOSi
O CH2CH2CH2Si Cl
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH3 [69733-73-9] 25g/Â¥18,000 100g/Â¥58,500
HMIS: 3-2-1-X




49
Gelest, Inc.
name MW bp/mm (mp) D420 nD20
SIP6723.25
Cl
3-PHENOXYPROPYLMETHYLDICHLOROSILANE 249.21 110°/1
O CH2CH2CH2Si CH3 C10H14OCl2Si
[28229-56-3] HMIS: 3-2-1-X 25g/Â¥37,800
Cl

SIP6723.3
Cl 3-PHENOXYPROPYLTRICHLOROSILANE 269.63 40°/0.02 1.2574 1.5190
C9H11Cl3OSi flashpoint: >110°C (>230°F)
O CH2CH2CH2Si Cl
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl [60333-76-8] 25g/Â¥15,300 100g/Â¥49,500
HMIS: 3-2-1-X


SIP6723.4
Cl 11-PHENOXYUNDECYLTRICHLOROSILANE 381.85
C17H27Cl3OSi
O (CH2)10CH2Si Cl
forms SAMs that orient pentacene
Cl
[526204-46-6] HMIS: 3-1-1-X 5.0g/Â¥94,500

SIP6724.7
CH3
4-PHENYLBUTYLDIMETHYLCHLOROSILANE 226.83 85-7°/0.6 0.964 1.497925
(CH2)4Si Cl C12H19ClSi flashpoint: >110°C (>230°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH3 25g/Â¥49,500
HMIS: 3-2-1-X


SIP6724.8
4-PHENYLBUTYLMETHYLDICHLOROSILANE 247.24 105-9°/1.5 1.0925
Cl
C11H16Cl2Si flashpoint: >110°C (>230°F)
(CH2)4Si CH3 HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
25g/Â¥49,500
HMIS: 3-2-1-X
Cl
SIP6724.9
4-PHENYLBUTYLTRICHLOROSILANE 267.06 82°/0.4 1.192 1.5121
Cl
Si Cl C10H13Cl3Si flashpoint: >110°C (>230°F)
CH2CH2CH2CH2
employed in bonded phases for HPLC
Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[17886-88-3] 25g/Â¥49,500
TSCA HMIS: 3-2-1-X

CH3 O SIP6726.0
PHENYLDIMETHYLACETOXYSILANE 194.30 127-9°/44 1.006 1.4907
Si O CCH3 C10H14O2Si flashpoint: 72°C (162°F)
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
CH3
[17887-60-4] 25g/Â¥28,800
TSCA HMIS: 2-2-1-X

SIP6728.0
COMMERCIAL




CH3 PHENYLDIMETHYLCHLOROSILANE 170.71 192-3° 1.032 1.5082
C8H11ClSi flashpoint: 61°C (141°F)
Si Cl ΔHvap: 11.4 kcal/mole
vapor pressure, 25°: 1 mm
viscosity: 1.4 cSt
CH3 HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[768-33-2] TSCA HMIS: 3-2-1-X 25g/Â¥9,100 100g/Â¥29,400 2kg/Â¥245,000

SIP6728.4
PHENYLDIMETHYLETHOXYSILANE 180.32 93°/25 0.926 1. 4799
CH3
C10H16OSi TOXICITY- oral rat, LD50: 2460mg/kg
viscosity: 1.3 cSt flashpoint: 61°C (141°F)
Si OC2H5
dipole moment: 1.34
CH3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[1825-58-7] 10g/Â¥6,700 50g/Â¥26,600
TSCA HMIS: 2-2-0-X

SIP6730.0
PHENYLETHYLDICHLOROSILANE 205.16 225-6° 1.184 1.5321
C8H10Cl2Si flashpoint: 92°C (198°F)
Cl
ΔHvap: 11.9 kcal/mole vapor pressure, 100°: 13mm
Si HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[1125-27-5] 25g/Â¥33,600
C2H5 Cl TSCA HMIS: 3-2-1-X

SIP6736.4
Cl
6-PHENYLHEXYLTRICHLOROSILANE 295.71 95°/0.1 1.505225
CH2CH2CH2CH2CH2CH2Si Cl C12H17Cl3Si
Cl [18035-33-1] HMIS: 3-1-1-X 5.0g/Â¥43,200


PLEASE INQUIRE ABOUT BULK QUANTITIES
50
Gelest, Inc.

name MW bp/mm (mp) D420 nD20
SIP6736.8
PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE 208.38 108-9°/11 1.4982
N(CH 3)2 C11H20N2Si flashpoint: 78°C (172°F)
Si HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents




HYDROPHOBIC
[33567-83-8] 10g/Â¥16,200
CH3 N(CH 3)2 HMIS: 3-2-1-X

SIP6738.0
PHENYLMETHYLDICHLOROSILANE 191.13 205-6° 1.187 1.5180
C7H8Cl2Si (-53°)mp
Cl vapor pressure:, 82.5°: 13mm TOXICITY- ipr mus, LD50: 300mg/kg
ΔHvap: 11.5 kcal/mole
Si flashpoint: 82°C (180°F)
CH3 HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl
[149-74-6] 25g/Â¥4,500 500g/Â¥21,000
TSCA HMIS: 3-2-1-X

SIP6738.5
CH2CH2CH3
1-PHENYL-1-(METHYLDICHLOROSILYL)BUTANE 247.24 87-9°/1 1.10 1.5120
CH
C11H16Cl2Si flashpoint: >110°C(>230°F)
Cl Si Cl 25g/Â¥54,000
HMIS: 3-2-1-X
CH3
SIP6739.0
PHENYLMETHYLDIETHOXYSILANE 210.35 117-8°/31 0.963 1.4690
C11H18O2Si flashpoint: 89°C (192°F)
OC2H5 dipole moment: 1.32
Si HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[775-56-4] 25g/Â¥7,700 100g/Â¥25,200
TSCA HMIS: 2-2-1-X
CH3 OC2H5
SIP6740.0
PHENYLMETHYLDIMETHOXYSILANE 182.29 199-200° 0.9934 1.4694
C9H14O2Si TOXICITY- oral rat, LD50: 892 mg/kg
OCH 3
viscosity, 20°: 1.65 cSt flashpoint: 76°C (168°F)
Si HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[3027-21-2] 25g/Â¥5,300 250g/Â¥36,800
CH3 OCH 3 TSCA HMIS: 3-2-1-X

SIP6743.0
CH3
(3-PHENYLPROPYL)DIMETHYLCHLOROSILANE 212.78 75°/0.5 0.963
CH2CH2CH2Si Cl C11H17ClSi see also SIP6724.7 flashpoint: 103°C (216°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH3 [17146-09-7] 5.0g/Â¥7,200 50g/Â¥50,400
TSCA HMIS: 3-1-1-X

SIP6744.0
Cl (3-PHENYLPROPYL)METHYLDICHLOROSILANE 233.21 96-8°/4 1.08625 1.509025
C10H14Cl2Si
CH2CH2CH2Si CH3
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl
[17776-66-8] 25g/Â¥36,900
HMIS: 3-2-1-X
O
SIP6790.0
OCCH 3 O
PHENYLTRIACETOXYSILANE 282.32 158°/30 1.194 1.4708
Si O CCH3 C12H14O6Si flashpoint: 102°C (216°F)
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OCCH 3
[18042-54-1] 25g/Â¥27,000 100g/Â¥87,800
TSCA HMIS: 3-2-1-X
O
SIP6810.0
PHENYLTRICHLOROSILANE 211.55 201° 1.324 1.5247
C6H5Cl3Si (-33°)mp
COMMERCIAL


ΔHvap: 11.4 kcal/mole TOXICITY- oral rat, LD50: 2340mg/kg
vapor pressure, 75°: 10mm flashpoint: 91°C (195°F)
Cl
surface tension: 27.9 dynes/cm viscosity: 1.08 cSt
Si specific heat: 0.24 cal/g/° dipole moment: 2.41
Cl Cl coefficient of thermal expansion: 1.2 x 10-3 critical temperature: 438°
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[98-13-5] 25g/Â¥4,500 2kg/Â¥25,200 18kg/inquire
TSCA HMIS: 3-2-1-X

CH2CH2CH3 SIP6813.0
CH 1-PHENYL-1-TRICHLOROSILYLBUTANE 267.65 78-80°/0.8 1.201 1.5180
C10H13Cl3Si flashpoint: >110°C(>230°F)
Cl Si Cl
10g/Â¥49,500
HMIS: 3-2-1-X
Cl



FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
51
Gelest, Inc.

name MW bp/mm (mp) D420 nD20
SIP6821.0
PHENYLTRIETHOXYSILANE 240.37 112-3°/10 0.996 1.4718
C12H20O3Si TOXICITY- oral rat, LD50: 2830mg/kg
vapor pressure, 75°: 1mm flashpoint: 96°C (205°F)
coefficient of thermal expansion: 0.9 x 10-3 surface tension 28 dynes/cm
dipole moment: 1.85 debye dielectric constant: 4.12
OC2H5
viscosity, 25°: 1.7 cSt
Si
improves photoresist adhesion to silicon nitride
C2H5O OC2H5

COMMERCIAL
effective treatment for organic-grafted clays1.
1. K. Canrado et al, Chem. Mater. 13, 3766, 2001.
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[780-69-8] 100g/Â¥4,500 2kg/Â¥37,100 17kg/inquire
TSCA HMIS: 2-1-1-X

SIP6822.0
PHENYLTRIMETHOXYSILANE 198.29 211° 1.064 1.4734
C9H14O3Si (-25°)mp
viscosity, 25°: 2.1 cSt TOXICITY- ivn mus, LD50: 180mg/kg
vapor pressure, 108°: 20mm flashpoint: 86°C (187 °F)
OCH 3
dipole moment: 1.77 dielectric constant: 4.44
Si intermediate for silicone resin coatings
CH3O OCH 3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[2996-92-1] 100g/Â¥4,500 2kg/Â¥32,200 18kg/inquire
TSCA HMIS: 3-2-1-X

SIP6826.5
PHENYLTRIS(METHYLETHYLKETOXIMINO)- 363.53 60-5°/3 0.995
SILANE, 95% flashpoint: >61°C (>142°F)
H3C
C18H29N3O3Si
C N O Si
CH3CH2 3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[34036-80-1] 50g/Â¥7,200 250g/Â¥28,800
TSCA HMIS: 3-2-1-X

SIP6910.0
CH3
n-PROPYLDIMETHYLCHLOROSILANE 136.70 113-4° 0.8726 1.4138
CH3CH2CH2 Si Cl C5H13ClSi flashpoint: 10°C (50°F)
HYDROLYTIC SENSITIVITY: 8 Si-Cl reacts rapidly with water/moisture
CH3 [17477-29-1] 25g/Â¥20,700 100g/Â¥67,500
TSCA HMIS: 3-4-1-X

SIP6911.0
PROPYLDIMETHYLMETHOXYSILANE 132.28 94-6° 0.787 1.392725
C6H16OSi
[18182-14-4] HMIS: 3-3-1-X 10g/Â¥36,900
SIP6912.0
Cl
n-PROPYLMETHYLDICHLOROSILANE 157.11 125° 1.027 1.425
C4H10Cl2Si flashpoint: 27°C (81°F)
CH3CH2CH2 Si CH3
viscosity, 20°: 0.8 cSt.
Cl HYDROLYTIC SENSITIVITY: 8 Si-Cl reacts rapidly with water/moisture
[4518-94-9] 25g/Â¥16,200 100g/Â¥52,700
TSCA HMIS: 3-3-1-X

OCH 3 SIP6914.0
PROPYLMETHYLDIMETHOXYSILANE 148.28 126° 0.8689 1.3931
CH3CH2CH2 Si CH3 C6H16O2Si
[18173-73-4] HMIS: 3-3-1-X 25g/Â¥38,700
OCH 3
SIP6915.0
Cl n-PROPYLTRICHLOROSILANE 177.53 123-4° 1.185 1.4290
C3H7Cl3Si flashpoint: 35°C (95°F)
CH3CH2CH2 Si Cl
ΔHvap: 8.7 kcal/mole
vapor pressure, 16°: 10mm
HYDROLYTIC SENSITIVITY: 8 Si-Cl reacts rapidly with water/moisture
Cl
[141-57-1] 25g/Â¥5,400 2.5kg/Â¥73,500
TSCA HMIS: 3-3-1-X

SIP6917.0
OC2H5
COMMERCIAL




n-PROPYLTRIETHOXYSILANE 206.36 179-80° 0.8916 1.3956
CH3CH2CH2 Si OC2H5 C9H22O3Si flashpoint: 57°C (135°F)
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OC2H5
[2550-02-9] 25g/Â¥5,400 2.0kg/Â¥56,000
TSCA HMIS: 2-3-1-X

SIP6918.0
n-PROPYLTRIMETHOXYSILANE 164.27 142° 0.93225 1.3880
OCH 3
C6H16O3Si TOXICITY- oral rat, LD50: 7420mg/kg
CH3CH2CH2 Si OCH 3 γc of treated surface: 28.5 dynes/cm flashpoint: 34°C (93°F)
utilized in architectural hydrophobic coatings
OCH 3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[1067-25-0] 25g/Â¥4,500 2kg/Â¥33,600 16kg/inquire
TSCA HMIS: 3-3-1-X


PLEASE INQUIRE ABOUT BULK QUANTITIES
52
Gelest, Inc.
name MW bp/mm (mp) D420 nD20
SIS6952.0
SILICLAD® 0.88
OCTADECYL FUNCTIONAL SILANE flashpoint: 25°C (77°F)
20% in t-AMYL ALCOHOL and DIACETONE ALCOHOL amber liquid
γc of treated glass surface: 31 dynes/cm
coefficient of friction of treated glass surface: 0.2-0.3
O




HYDROPHOBIC
surface resistivity of treated surface: 1.2 x 1013 ohms
(CH3(CH2)17Si O reduces blood protein adsorption1.




COMMERCIAL
hydrophobic, anti-stiction coating for silicon substrates2.
O
1. B. Arkles et al, in “Silanes Surfaces & Interfaces� D. Leyden ed, Gordon & Breach, 1986, p 91.
2. A. Almanza-Workman et al, J. Electro Chem. Soc. 149, H6, 2002
for application information see Performance Products Brochure
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[39443-39-5] 100g/Â¥9,000 1.5kg/Â¥77,400 15kg/inquire
TSCA HMIS: 2-3-1-X

SIS6984.0
OH
SODIUM METHYLSILICONATE, 30% in water 116.12 1.24
- +
H3C Si O Na CH5NaO3Si pH: 13.0
viscosity: 10 cSt.
OH [16589-43-8] 500g/Â¥7,200 2.0kg/Â¥21,600 20kg/inquire
TSCA HMIS: 3-0-0-X

SIT7093.0
TETRADECYLTRICHLOROSILANE 331.83 155-6°/3 1.4575
CH3(CH2)13SiCl3 C14H29Cl3Si
[18402-22-7] TSCA HMIS: 3-1-1-X 25g/Â¥36,000

SIT7095.0
OC2H5 OC2H5 1,1,3,3-TETRAETHOXY-1,3-DIMETHYL- 282.48 205° 0.953 1.3912
DISILOXANE, 95% flashpoint: 58°C (136°F)
H3C Si O Si CH3
C10H26O5Si2
OC2H5 OC2H5 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[18001-60-0] 25g/Â¥24,300
HMIS: 3-3-1-X

SIT7534.0
CH3 CH3 1,1,3,3-TETRAMETHYL-1,3-DIETHOXYDISILOXANE 222.43 161° 0.879 1.3880
C8H22O3Si2 (-134°)mp
C2H5O Si O Si OC2H5
viscosity: 1.0 cSt flashpoint: 38°C (100°F)
CH3 CH3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[18420-09-2] 25g/Â¥11,700 100g/Â¥38,300
TSCA HMIS: 2-2-0-X

SIT7753.0
1,1,3,3-TETRAPHENYLDIMETHYLDISILAZANE 409.68
218-220°/1.5
C26H27NSi2 (91°)mp
H
flashpoint: >110°C (>230°F)
H3C Si N Si CH3
deactivates glass capillary columns by persilylation1.
1. K. Grob et al, High Resol. Chrom. & Col Chrom., 3, 197, 1980.
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[7453-26-1] 5.0g/Â¥10,800 25g/Â¥43,200
TSCA-L HMIS: 2-1-0-X

SIT7906.0
CH3 CH3
H3C THEXYLDIMETHYLCHLOROSILANE 178.78 55-6°/10 0.911 1.4490
(14-15°)mp
CHC Si Cl t-HEXYLDIMETHYLCHLOROSILANE
C8H19ClSi flashpoint: 51°C (125°F)
H3C
CH3 CH3 HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents, protic solvents
[67373-56-2] 5.0g/Â¥6,800 25g/Â¥27,000
HMIS: 3-2-1-X

SIT7906.6
CH3 Cl
H3C THEXYLTRICHLOROSILANE 219.61 70-2°/15
C6H13Cl3Si
CHC Si Cl
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents, protic solvents
H3C
CH3 Cl [18151-53-6] 10g/Â¥42,800
HMIS: 3-3-1-X

SIT8030.0
p-TOLYLDIMETHYLCHLOROSILANE 184.74 215-7° 1.00725 1.5055
CH3
C9H13ClSi flashpoint: 67°C (153°F)
H3C Si Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents, protic solvents
[35239-30-6] 5.0g/Â¥15,800
TSCA HMIS: 3-2-1-X
CH3
SIT8035.0
Cl
p-TOLYLMETHYLDICHLOROSILANE 205.16 161-5°/7 1.1609 1.5330
H3C Si CH3 C8H10Cl2Si flashpoint: 80°C (176°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents, protic solvents
Cl
[25898-37-7] 25g/Â¥48,600
TSCA HMIS: 3-2-1-X




53
Gelest, Inc.
name MW bp/mm (mp) D420 nD20
SIT8040.0
p-TOLYLTRICHLOROSILANE 225.58 218-20° 1.28 1.522425
Cl
C7H7Cl3Si flashpoint: 92°C (197°F)
γc of treated surface: 34 dynes/cm
H3C Si Cl
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents, protic solvents
Cl
[701-35-9] 25g/Â¥10,200 100g/Â¥22,400
TSCA HMIS: 3-2-1-X

SIT8042.0
p-TOLYLTRIMETHOXYSILANE 212.32 75-8°/8 1.033 1.472625
C10H16O3Si flashpoint: 94°C (201°C)
OCH 3
γc of treated surface: 34 dynes/cm
H3C Si OCH 3 charge control surface treatment for electrostatic copier particles1.
1. H. Yamazaki, Jpn. Kokai, JP 06027719 A2, 1994.
OCH 3 HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[17873-01-7] 10g/Â¥16,200 50g/Â¥64,800
HMIS: 3-1-1-X

SIT8045.0
CH3
TRIACONTYLDIMETHYLCHLOROSILANE, blend 515.42 (60-82°)mp
C32H67ClSi 80% C30 and higher, 20% C22-C28
CH3(CH2)28CH2 Si Cl
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents, protic solvents
CH3 [70851-52-4] 25g/Â¥22,100 100g/Â¥71,600
TSCA HMIS: 3-1-0-X

SIT8048.0
Cl TRIACONTYLTRICHLOROSILANE, blend 556.26 (60-82°)mp
C30H61Cl3Si 80% C30 and higher, 20% C22-C28
CH3(CH2)28CH2 Si Cl employed in bonded phases for HPLC of carotenes
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents, protic solvents
Cl
[70851-48-8] 25g/Â¥22,100 100g/Â¥71,600
TSCA HMIS: 3-1-1-X

SIT8162.0
13-(TRICHLOROSILYLMETHYL)HEPTACOSANE, 95% 528.21 215°/0.01 0.946
2-DODECYLHEXADECYLTRICHLOROSILANE (20-35°)mp
C28H57Cl3Si contains isomers
Cl Si Cl
Cl
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[194242-99-4] 10g/Â¥54,000
TSCA-L HMIS: 3-1-1-X

SIT8162.4
7-(TRICHLOROSILYLMETHYL)PENTADECANE 359.88 146-9°/0.2 0.985
C16H33Cl3Si 2-HEXYLDECYLTRICHLOROSILANE
Si Cl
Cl
10g/Â¥78,300
HMIS: 3-1-1-X
Cl
SIT8170.0
(TRIDECAFLUORO-1,1,2,2-TETRAHYDRO- 440.70 189-91° 1.473 1.3453
OCTYL)DIMETHYLCHLOROSILANE flashpoint: 52°C (127°F)
C10H10ClF13Si PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE
employed in column chromatography where low protein retention is required1.
CH3 employed in solid phase extraction of fluorous phases2.
modification of layered silicate yields material w/ film forming properties3.
CF3CF2CF2CF2CF2CF2CH2CH2Si Cl
1. G. Xindu et al, J. Chromatog, 269, 96, 1983.
CH3 2. D. Curran, J. Org. Chem. 62,6714, 1997.
3. M. Ogawa et al, Chem. Mater., 10, 3787, 1998.
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[102488-47-1] 10g/Â¥13,100 50g/Â¥56,700
HMIS: 3-3-1-X

SIT8172.0
(TRIDECAFLUORO-1,1,2,2-TETRAHYDRO- 461.12 189-90° 1.55025 1.3500
Cl
OCTYL)METHYLDICHLOROSILANE flashpoint: 51°C (125°F)
CF3CF2CF2CF2CF2CF2CH2CH2Si CH3
C9H7Cl2F13Si vapor pressure,76°: 12mm
Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[73609-36-6] 10g/Â¥13,100 50g/Â¥70,200
HMIS: 3-3-1-X

SIT8174.0
(TRIDECAFLUORO-1,1,2,2-TETRAHYDRO- 481.55 84-5°/17 1.639 1.3521
OCTYL)TRICHLOROSILANE flashpoint: 54°C (129°F)
Cl
C8H4Cl3F13Si
CF3CF2CF2CF2CF2CF2CH2CH2Si Cl lowers the coefficient of friction of silicon substrates1.
1. V. DePalma et al, Langmuir, 5, 868, 1989.
Cl
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[78560-45-9] 10g/Â¥11,700 50g/Â¥46,800
TSCA-L HMIS: 3-3-1-X

SIT8175.0
COMMERCIAL




(TRIDECAFLUORO-1,1,2,2-TETRAHYDRO- 510.36 86°/1.5 1.351 1.3436
OC2H5
OCTYL)TRIETHOXYSILANE (<-38°)mp
C14H19F13O3Si flashpoint: 84°C (183°F)
CF3CF2CF2CF2CF2CF2CH2CH2Si OC2H5
ΔHvap: 66.1 kj/mole
viscosity: 3.5 cSt.
OC2H5
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[51851-37-7] 10g/Â¥13,500 50g/Â¥54,000
TSCA HMIS: 2-2-1-X

54
Gelest, Inc.
name MW bp/mm (mp) D420 nD20
SIT8176.0
(TRIDECAFLUORO-1,1,2,2-TETRAHYDRO- 468.29 60-2°/0.5 1.44 1.3322
OCH 3
CF3CF2CF2CF2CF2CF2CH2CH2Si OCH 3 OCTYL)TRIMETHOXYSILANE
C11H13F13O3Si
OCH 3 HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[85857-16-5] 10g/Â¥15,800 50g/Â¥63,000
HMIS: 3-1-1-X




HYDROPHOBIC
SIT8369.0
Cl
(3,3,3-TRIFLUOROPROPYL)METHYL- 211.08 121-2° 1.2611 1.3850
DICHLOROSILANE TOXICITY- ipr mus: 254mg/kg
CF3CH2CH2 Si CH3
C4H7Cl2F3Si flashpoint: 15°C (59°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl [675-62-7] 10g/Â¥13,500 50g/Â¥54,000
TSCA HMIS: 3-4-1-X

SIT8371.0
Cl
(3,3,3-TRIFLUOROPROPYL)TRICHLOROSILANE 231.50 113-4° 1.395 1.385
C3H4Cl3F3Si flashpoint:15°C (59°F)
CF3CH2CH2 Si Cl
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[592-09-6] 10g/Â¥13,500 50g/Â¥54,000
Cl TSCA HMIS: 3-4-1-X

SIT8372.0
OCH 3
(3,3,3-TRIFLUOROPROPYL)TRIMETHOXYSILANE 218.25 144° 1.137 1.3546
CF3CH2CH2 Si OCH 3 C6H13F3O3Si flashpoint: 38°C (100°F)
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture γc of treated surface: 20.6 dynes/cm
[429-60-7] TSCA HMIS: 3-3-1-X 5.0g/Â¥15,300 25g/Â¥61,200
OCH 3
SIT8510.0
TRIMETHYLCHLOROSILANE 108.64 57.6° 0.8580 1.3885
CH3 C3H9ClSi (-57.7°)mp
TMCS
TOXICITY- ihl mus, LDLo: 500mg/m3/10M
Cl Si CH3 vapor pressure, 20°: 190mm; 50°: 591 mm flashpoint: -27°C (-17°F)
ΔHvap: 6.6 kcal/mole autoignition temperature: 395°
CH3 most economical and broadly used silylation reagent




COMMERCIAL
[75-77-4] TSCA HMIS: 3-4-2-X 25g/Â¥4,500 750g/Â¥10,800 3kg/inquire
SIT8515.0
TRIMETHYLETHOXYSILANE 118.25 75-6° 0.7573 1.3742
ETHOXYTRIMETHYLSILANE (-83°)mp
CH3
C5H14OSi flashpoint: -27°C (-17°F)
dipole moment: 1.2 vapor pressure, 25°: 111mm
C2H5O Si CH3
ΔHcomb: 970.4 kcal/mole ΔHvap: 33.5 kcal/mole
CH3 critical temperature: 233°
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[1825-62-3] 25g/Â¥4,500 1.5kg/Â¥62,100 14kg/inquire
TSCA HMIS: 2-4-1-X

SIT8566.0
CH3
TRIMETHYLMETHOXYSILANE 104.22 57-8° 0.7560 1.3678
C4H12OSi flashpoint: -11°C (12°F)
CH3O Si CH3
dipole moment: 1.18 debye
CH3 HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[1825-61-2] 25g/Â¥8,100 100g/Â¥26,100
TSCA HMIS: 3-4-1-X

CH3 Cl SIT8572.6
TRIMETHYLSILOXYTRICHLOROSILANE 223.63 128° 1.126
H3C Si O Si Cl
C3H9Cl3OSi2
[2750-45-0] HMIS: 3-2-1-X 25g/Â¥32,400
CH3 Cl
SIT8712.0
H3C CH3
TRIS(DIMETHYLAMINO)METHYLSILANE 175.35 55-6°/17 0.85022 1.43222
N CH3
C7H21N3Si (-11°)mp
CH3 Si N
flashpoint: 30°C (86°F)
CH3
N HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
H3C CH3 [3768-57-8] 10g/Â¥10,200 50g/Â¥40,600
TSCA HMIS: 3-3-1-X
CH 3
SIT8719.5
H 3C CH 3
Si
[TRIS(TRIMETHYLSILOXY)SILYLETHYL]DIMETHYL- 417.32 85°/0.6 0.906 1.43175
Si(CH 3)3
(CH 3)3Si O CHLOROSILANE
O O
C13H37O3ClSi5
Si
forms hydrophobic monolayers
(CH 2)2
HYDROLYTIC SENSITIVITY: 8 Si-CI reacts rapidly with water/moisture, protic solvents
H 3C Si CH 3
10g/Â¥37,800
HMIS: 3-2-1-X
Cl

SIU9050.0
UNDECYLTRICHLOROSILANE 289.75 155-60°/15 1.02
C11H23Cl3Si flashpoint: 107°C (225°)
CH3(CH2)9CH2SiCl3
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[18052-07-8] 25g/Â¥46,800
HMIS: 3-1-1-X

55
Gelest, Inc.

Hydrophobic Dipodal Silanes
Dipodal Surface Bonding

name MW bp/mm (mp) D420 nD20
SIB1030.0
BIS[2-(CHLORODIMETHYLSILYL)- 319.42 116-7°/0.2 1.02
ETHYL]BENZENE mixed isomers flashpoint: 187°C (369°F)
ClMe 2SiCH2CH2
C14H24Cl2Si2
CH2CH2SiMe 2Cl intermediate for silahydrocarbon polymers
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[74129-20-7] 50g/Â¥86,400
TSCA HMIS: 3-1-1-X


SIB1042.0
1,2-BIS(CHLORODIMETHYLSILYL)ETHANE 215.27
198-9°
(36-9°)mp
TETRAMETHYLDICHLORODISILETHYLENE
C6H16Cl2Si2 flashpoint: 40°C (104°F)
Cl(CH3)2SiCH2CH2Si(CH3)2Cl
reagent for protection of primary amines, including amino acids1.
1. S. Djuric et al, Tet. Lett., 22, 1787, 1981
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[13528-93-3] 25g/Â¥9,000 100g/Â¥29,300
TSCA HMIS: 3-2-1-X


SIB1046.0
1,6-BIS(CHLORODIMETHYLSILYL)HEXANE, 95% 271.38 113-6°/3 0.961 1.4538
Cl(CH3)2Si(CH2)6Si(CH3)2Cl C10H24Cl2Si2 flashpoint: 150°C (302°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[14799-66-7] 25g/Â¥22,100 100g/Â¥72,000
HMIS: 3-1-1-X


SIB1048.0
1,8-BIS(CHLORODIMETHYLSILYL)OCTANE, 95% 299.43 106-7°/0.4 0.946 1.4540
C12H28Cl2Si2 flashpoint: 180°C (356°F)
Cl(CH3)2Si(CH2)8Si(CH3)2Cl
intermediate for sila-hydrocarbon polymers
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[5089-28-1] 25g/Â¥17,600 100g/Â¥56,700
HMIS: 3-1-1-X

CH3
SIB1048.2
Cl Si
1,3-BIS(CHLORODIMETHYLSILYL)PROPANE 229.30 94°/19 1.0244 1.4647
CH3 CH2 C7H18Cl2Si2
forms cyclic derivatives of polyalkyleneoxides suitable for anionic copolymerization1.
CH2
CH3 1. T. Zundel et al, Macromol, 31, 2724, 1998
CH2
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl Si
[2295-06-9] 5.0g/Â¥43,200
HMIS: 3-2-1-X
CH3

SIB1614.0
Cl Cl BIS(METHYLDICHLOROSILYL)ETHANE 256.11 208-210° 1.2628 1.4760
(31-3°)mp
1,4-DIMETHYL-1,1,4,4-TETRACHLORO-1,4-DISILABUTANE
CH3SiCH2CH2SiCH3
C4H10Cl4Si2 flashpoint: 94°C (201°F)
dipodal coupling agent
Cl Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[3353-69-3] 25g/Â¥13,100 100g/Â¥42,300
TSCA HMIS: 3-2-1-X

C2H5O OC2H5 SIB1615.0
BIS(METHYLDIETHOXYSILYL)ETHANE 294.54 80°/1.5 0.92 1.4170
CH3SiCH2CH2SiCH3
C12H30O4Si2
OC2H5 [18043-74-8] HMIS: 2-2-1-X 25g/Â¥27,900
C2H5O
SIB1630.0
F F
BIS(METHYLDIFLUOROSILYL)ETHANE 190.29 114° 1.118
C4H10F4Si2
CH3SiCH2CH2SiCH3
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
F F 10g/Â¥29,300
HMIS: 3-3-1-X


SIB1808.0
1,2-BIS(TRICHLOROSILYL)DECANE 409.16 114°/1 1.2496 1.4754
C10H20Cl6Si2
[62987-03-3] HMIS: 3-2-1-X 25g/Â¥38,300
SiCl3

SiCl3



PLEASE INQUIRE ABOUT BULK QUANTITIES
56
Gelest, Inc.

name MW bp/mm (mp) D420 nD20
SIB1811.5
1,8-BIS(TRICHLOROSILYLETHYL)HEXA- 725.06 142-4°/0.6
CF2CF2CF2CF2CF2CF2CF2CF2




DIPODAL HYDROPHOBIC
DECAFLUOROOCTANE (69-70°)mp
CH2 CH2
C12H8Cl6F16Si2
CH2 CH2
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
SiCl3 SiCl3 [445303-83-3] 5.0g/Â¥72,000
HMIS: 3-1-1-X

SIB1812.0
Cl Cl BIS(TRICHLOROSILYL)HEXANE 353.05 148-50°/10 1.327 1.4759
C6H12Cl6Si2 flashpoint: 75°C (167°F)
Cl Si(CH2)6Si Cl
forms mesoporous sol-gel structures
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl Cl [13083-94-8] 10g/Â¥17,600 50g/Â¥70,200
TSCA HMIS: 3-2-1-X

SIB1813.0
Cl Cl BIS(TRICHLOROSILYL)METHANE 282.9 183° 1.5567 1.4740
CH2Cl6Si2
Cl SiCH2Si Cl nucleus for star polymers and dendrimers
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl Cl [4142-85-2] 5.0g/Â¥36,000
HMIS: 3-2-1-X

SIB1814.0
Cl Cl BIS(TRICHLOROSILYL)OCTANE 381.10 140°/1 1.22 1.4757
C8H16Cl6Si2 flashpoint: 115°C (240°F)
Cl Si(CH2)8Si Cl forms mesoporous sol-gel structures
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl Cl [52217-53-5] 25g/Â¥16,200 100g/Â¥52,200
HMIS: 3-1-1-X

SIB1815.0
Cl Cl 1,3-BIS(TRICHLOROSILYL)PROPANE 310.97 115-7°/4 1.4394 1.4732
C H6Cl6Si2 (29-30°)mp
Cl 3 forms mesoporous sol-gel structures
Cl SiCH2CH2CH2Si
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl Cl [18171-50-1] 10g/Â¥36,000
HMIS: 3-2-1-X

SIB1815.4
BIS(TRICHLOROSILYLUNDECYL)ETHER 593.48
Cl3Si (CH2)11O(CH 2)11 SiCl3
C22H44Cl6OSi2
5.0g/Â¥109,000
HMIS: 3-1-1-X

SIB1816.6
1,4-BIS(TRIETHOXYSILYL)BENZENE 402.64 130-2°/0.4 1.015 1.4549
C2H5O OC2H5
C18H34O6Si2
C2H5O Si Si OC2H5 forms thermally stable hybrid silica fibers1.
1. Y. Yang et al, Chem. Mater., 18, 1324, 2006
C2H5O OC2H5
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[52217-60-4] 5.0g/Â¥85,500
HMIS: 2-2-1-X

SIB1817.0
BIS(TRIETHOXYSILYL)ETHANE 354.59 96°/0.3 0.957 1.4052
flashpoint: 107°C (225°F)
HEXAETHOXYDISILETHYLENE
C14H34O6Si2 vapor pressure, 150°: 10mm
ΔHvap: 101.5 kj/mole TOXICITY - oral rat, LD50: 161mg/kg COMMERCIAL
additive to silane coupling agent formulations that enhances hydrolytic stability
OC2H5 OC2H5 employed in corrosion-resistant coatings/primers for steel and aluminum1,2.
sol-gels of α,ω-bis(trimethoxysilyl)alkanes reported 3.
C2H5O SiCH2CH2Si OC2H5
forms mesoporous, derivatizeable molecular sieves4.
OC2H5 OC2H5 1. W. Van Ooij et al, J. Adhes. Sci. Tech. 11, 29, 1997.
2. W. Van Ooij et al, Chemtech., 28, 26, 1998.
3. D. A. Loy et al, J. Am. Chem. Soc., 121, 5413, 1999.
4. B. Molde et al, Chem. Mat., 11, 3302, 1999.
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[16068-37-4] 25g/Â¥6,800 100g/Â¥22,100 2.0kg/Â¥147,000
TSCA-S HMIS: 3-1-1-X

SIB1821.0
OEt OEt BIS(TRIETHOXYSILYL)METHANE 340.56 114-5°/3.5 0.9741 1.4098
4,4,6,6-TETRAETHOXY-3,7-DIOXA-4,6-DISILANONANE
EtO SiCH2Si OEt C13H32O6Si2
intermediate for sol-gel coatings, hybrid inorganic-organic polymers
OEt OEt HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[18418-72-9] 5.0g/Â¥16,700 25g/Â¥66,600
HMIS: 2-3-0-X


(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
57
Gelest, Inc.



name MW bp/mm (mp) D420 nD20
SIB1824.0
BIS(TRIETHOXYSILYL)OCTANE 438.76 172-5°/0.75 0.926 1.4240
C20 H46 O6Si2
employed in sol-gel synthesis of mesoporous structures
(C2H5O)3Si(CH2)8Si(OC2H5)3 sol-gels of α, ω-bis(trimethoxysilyl)alkanes reported1.
1. D. A. Loy et al, J. Am. Chem. Soc., 121, 5413, 1999.
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[52217-60-4] 25g/Â¥13,500 100g/Â¥44,100
TSCA-L HMIS: 2-1-1-X

SIB1829.0
1,2-BIS(TRIMETHOXYSILYL)DECANE 382.65 130-2°/0.4 0.984 1.4303
C16H38O6Si2
pendant dipodal silane; employed in high pH HPLC
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
100g/Â¥70,200
25g/Â¥21,600
HMIS: 3-2-1-X
Si(OCH 3)3

Si(OCH 3)3
SIB1830.0
BIS(TRIMETHOXYSILYL)ETHANE 270.43 103-4°/5 1.068 1.4091
C8H22O6Si2 flashpoint: 65° (149°F)
OCH 3 OCH 3
CAUTION: INHALATION HAZARD vapor pressure, 20°: 0.08mm
CH3O SiCH2CH2Si OCH 3 employed in fabrication of multilayer printed circuit boards
1. J. Palladino, U.S. Pat. 5,073,456, 1991.
OCH 3 OCH 3 see also SIB1817.0
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[18406-41-2]TSCA HMIS: 4-2-1-X

SIB1831.0
BIS(TRIMETHOXYSILYLETHYL)BENZENE 374.58 148-50°/.1 1.08 1.4734
(MeO) 3SiCH2CH2
C16H30O6Si2 mixed isomers flashpoint: 193°C (380°F)
CH2CH2Si(OMe) 3
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[58298-01-4] 10g/Â¥14,900 50g/Â¥59,400
TSCA HMIS: 2-1-0-X

SIB1832.0
1,6-BIS(TRIMETHOXYSILYL)HEXANE 326.54 161°/2 1.014 1.4213
OCH 3 OCH 3
C12H30O6Si2 flashpoint: 95°C (203°F)
sol-gels of α, ω-bis(trimethoxysilyl)alkanes reported1.
CH3O Si(CH2)6Si OCH 3
1. D. A. Loy et al, J. Am. Chem. Soc., 121, 5413, 1999.
OCH 3 OCH 3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[87135-01-1] 10g/Â¥16,200 50g/Â¥64,800
HMIS: 3-2-1-X

SIB1832.2
OCH 3 p-BIS(TRIMETHOXYSILYLMETHYL)BENZENE 346.53 124-5°/0.05 1.097 1.47025
CH3O
CH3O Si CH2 CH2 Si OCH 3 C14H26O6Si2
CH3O OCH 3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[193358-40-6] 10g/Â¥81,000
HMIS: 3-1-1-X

SIB1833.4
BIS-1,3-(TRIMETHOXYSILYLPROPYL)- 402.64
CH2CH2CH2Si(OCH 3)3
(CH3O)3SiCH2CH2CH2
BENZENE
C18H34O6Si2
5.0g/Â¥65,300
HMIS: 3-2-1-X

SIC2265.5
(CHLORODIMETHYLSILYL)-6-[2-(CHLORODI- 309.43 1.03 1.4863
CH3 METHYLSILYL)ETHYL]BICYCLOHEPTANE mixture of 1 and 2 regio isomers, exo and endo
CH3
CH2CH2Si Cl C13H26Cl2Si2
Cl Si forms polymers
CH3
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
CH3
25g/Â¥20,300
HMIS: 3-2-1-X

SIT8185.8
1-(TRIETHOXYSILYL)-2-(DIETHOXYMETHYL- 324.56 100°/0.5 0.946 1.4112
COMMERCIAL




OC2H5 OC2H5
SILYL)ETHANE flashpoint:102°C (215°F)
H3C SiCH2CH2Si OC2H5 C13H32O5Si
dipodal silane; forms abrasion-resistant sol-gel coatings
OC2H5 OC2H5
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[18418-54-7] 25g/Â¥18,000 100g/Â¥58,500 2kg/inquire
TSCA HMIS: 3-2-1-X




PLEASE INQUIRE ABOUT BULK QUANTITIES
58
Gelest, Inc.

Polymeric Hydrophobic Silanes
Polymeric Surface Bonding




POLYMERIC HYDROPHOBIC
name MW bp/mm (mp) D420 nD20
Polybutadiene
SSP-055
CH2 CH2
TRIETHOXYSILYL MODIFIED POLY-1,2-BUTADIENE, 3500-4500 0.90
CH CH 50% in toluene
viscosity: 100-200 cSt.
CH2CHCH 2CHCH 2CH
coupling agent for EPDM resins
CH2CH2Si(OC2H5)3
[72905-90-9] TSCA HMIS: 2-4-1-X store <5° 100g/¥27,000 2.0kg/¥273,000
SSP-056
CH2 CH2
TRIETHOXYSILYL MODIFIED POLY-1,2-BUTADIENE, 3500-4500 0.93
CH CH 50% in volatile silicone
viscosity: 100-200 cSt.
CH2CHCH 2CHCH 2CH
primer coating for silicone rubbers
CH2CH2Si(OC2H5)3
[72905-90-9] TSCA HMIS: 2-3-1-X store <5° 100g/¥30,600
SSP-058
DIETHOXYMETHYLSILYL MODIFIED POLY-1,2-BUTA- 3500-4500 0.90
DIENE, 50% in toluene
viscosity: 75-150 cSt.
water tree resistance additive for crosslinkable HDPE cable cladding
100g/Â¥38,700
HMIS: 2-4-1-X store <5°
SSP-255
(30-35%TRIETHOXYSILYLETHYL)ETHYLENE- 4500-5500
(35-40% 1,4-BUTADIENE) - (25-30% STYRENE) terpolymer, 50% in toluene
(CH2CH)m (CH2CH)n(CH2CH CHCH 2)p
viscosity: 20-30 cSt. 100g/Â¥38,700
HMIS: 2-3-1-X
CH2CH2Si(OC2H5)3




Reactive Polydimethylsiloxane Oligomers
Chlorine Terminated PolyDimethylsiloxanes CAS: [67923-13-1] TSCA
Molecular Specific
Code Viscosity Weight Gravity Price/100g Price/1kg
DMS-K05 3-6 425-600 1.00 ¥24,800 ¥161,000
DMS-K13 20-50 2000-4000 0.99 ¥54,000
DMS-K26 500-800 15,000-20,000 0.99 ¥42,300

Dimethylamino Terminated PolyDimethylsiloxanes CAS: [67762-92-9] TSCA
Molecular Specific
Code Viscosity Weight Gravity Price/100g
DMS-N05 3-8 450-600 0.93 ¥72,000

Ethoxy Terminated PolyDimethylsiloxanes CAS: [70851-25-1] TSCA
Molecular Specific
Code Viscosity Weight Gravity Price/100g Price/1kg
DMS-XE11 5-10 800-900 0.94 ¥14,400 ¥94,500

Methoxy Terminated PolyDimethylsiloxanes CAS: [68951-97-3] TSCA
Molecular Specific
Code Viscosity Weight Gravity Price/100g Price/1kg
DMS-XM11 5-12 900-1000 0.94 ¥13,100 ¥84,600

Silanol Terminated PolyDimethylsiloxanes CAS: [70131-67-8] TSCA
Molecular Specific Refractive
Code Viscosity Weight % (OH) (OH) - Eq/kg Gravity Index Price/100g Price/3kg Price/16kg
DMS-S12 16-32 400-700 4.5-7.5 2.3-3.5 0.95 1.401 ¥8,600 ¥55,800 ¥174,000
DMS-S14 35-45 700-1500 3.0-4.0 1.7-2.3 0.96 1.402 ¥8,100 ¥52,700 ¥161,000
DMS-S15 45-85 2000-3500 0.9-1.2 0.53-0.70 0.96 1.402 ¥8,100 ¥52,700 ¥161,000



59
Gelest, Inc.
Hydrophilic Silane Properties
Polar - Non-hydrogen Bonding
name MW bp/mm (mp) D420 nD20
SIB1057.5
BIS(3-CYANOPROPYL)DIMETHOXYSILANE 226.35 180-2°/1 0.985
NCCH 2CH2CH2 OCH 3
C10H18N2O2Si
Si highly polar monomer for silicones
NCCH 2CH2CH2 OCH 3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[92779-73-2] 5.0g/Â¥42,800
HMIS: 3-2-1-X

SIB1660.0
BIS[(3-METHYLDIMETHOXYSILYL)PROPYL]- 600-800 1.00 1.45225
COMMERCIAL
CH3O POLYPROPYLENE OXIDE flashpoint: >110°C (>230°F)
CH3 OCH 3
viscosity: 6000-10,000 cSt.
CH3Si(CH2)3O(CH 2CHO) n(CH2)3SiCH3
w/tin catalyst forms moisture-crosslinkable resins
OCH 3
CH3O hydrophilic dipodal silane
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[75009-88-0] 100g/Â¥10,800 2.0kg/Â¥101,000
TSCA HMIS: 3-1-1-X

SIB1824.9
CH2
1,3-[BIS(3-TRIETHOXYSILYLPROPYL)POLY- 1113.5
O(CH 2CH2O)6-8CH2CCH2(OCH 2CH2)6-8O
ETHYLENOXY]-2-METHYLENEPROPANE
(CH2)3 (CH2)3
Si(OCH 2CH3)3 C
50H104O20Si2 (average)
(C2H5O)3Si

vinyl functional hydrophilic dipodal coupling agent for protein immobilization
1.0g/Â¥124,000
HMIS: 2-2-1-X
CH 3
SIC2436.0
N C CHCH 2CH 2 CH 3 (3-CYANOBUTYL)DIMETHYLCHLOROSILANE 175.73 80-4°/1 0.993
Si C7H14ClNSi
H 3C Cl HMIS: 3-2-1-X

SIC2437.0
CH3
(3-CYANOBUTYL)METHYLDICHLOROSILANE 196.17 63°/0.3 1.104
N C CHCH 2CH2 Cl 4-(DICHLOROMETHYLSILYL)-2-METHYLBUTYRONITRILE
Si C6H11Cl2NSi
H 3C Cl [71550-62-4] TSCA HMIS: 3-2-1-X 25g/Â¥18,000 100g/Â¥58,500

CH3 SIC2437.5
(3-CYANOBUTYL)METHYLDIMETHOXY- 187.32 77°/1.5 0.947 1.421325
N C CHCH 2CH2 OCH 3
SILANE flashpoint: 93°C (199°F)
Si C8H17NO2Si
H3C OCH 3 [793681-94-4] TSCA HMIS: 3-2-1-X
CH 3 SIC2438.0
(3-CYANOBUTYL)TRICHLOROSILANE 216.57 61-3°/0.2 1.220 1.469025
N C CHCH 2CH 2 Cl
C5H8Cl3NSi
Si
[163155-56-4] HMIS: 3-2-1-X 25g/Â¥17,600 100g/Â¥57,200
Cl Cl
CH 3 SIC2439.0
3-CYANOBUTYLTRIETHOXYSILANE 245.39
N C CHCH 2CH 2 OCH 3
C11H23NO3Si
Si
HMIS: 2-2-1-X
H 3CO OCH 3
SIC2440.0
2-CYANOETHYLMETHYLDICHLOROSILANE 168.10 60-2°/4 1.2015 1.455025
N C CH2CH2 Cl
C4H7Cl2NSi flashpoint: 60°C (140°F)
Si monomer for polar silicones used in GC phases
H3C Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
[1070-18-4] 25g/Â¥52,200
TSCA HMIS: 3-2-1-0

SIC2442.0
2-CYANOETHYLTRICHLOROSILANE 188.52 84-6°/10 1.356 1.4615
C3H4Cl3NSi (32-3°)mp
ΔHvap: 11.2 kcal/mole TOXICITY- oral rat, LD50: 2000mg/kg
N C CH 2CH 2SiCl3
vapor pressure, 85°: 12mm
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
[10731-22-3] 10g/Â¥11,300 50g/Â¥45,000
TSCA HMIS: 3-2-1-0-X




PLEASE INQUIRE ABOUT BULK QUANTITIES
60
Gelest, Inc.

name MW bp/mm (mp) D420 nD20
SIC2445.0




COMMERCIAL
OCH 2CH3 2-CYANOETHYLTRIETHOXYSILANE 217.34 224-5° 0.9792 1.4140
C9H19NO3Si TOXICITY- oral rat, LD50: 5630mg/kg
N C CH2CH2 Si OCH 2CH3




POLAR HYDROPHILIC
flashpoint: 86°C (186°F)
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OCH 2CH3
[919-31-3] 25g/Â¥6,800 100/Â¥22,100 2kg/Â¥126,000
TSCA HMIS: 2-2-0-X

SIC2446.0
2-CYANOETHYLTRIMETHOXYSILANE 175.26 112°/15 1.079 1.4126
C6H13NO3Si flashpoint: 79°C (174°F)
γc of treated surface: 34 dynes/cm
N C CH2CH2Si(OCH 3)3
crosslinker for moisture-cure silicone RTVs
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[2526-62-7] 25g/Â¥18,000 100g/Â¥58,500
TSCA HMIS: 3-2-1-X

SIC2451.0
3-CYANOPROPYLDIISOPROPYLDIMETHYL- 226.44 96-8°/0.2 0.89
CH(CH 3)2
AMINOSILANE 4-[DIMETHYLAMINOBIS(1-METHYLETHYL)SILYL]BUTANENITRILE
N C CH2CH2CH2Si N(CH 3)2 C12H26N2Si
stable cyanofunctional bonded phase
CH(CH 3)2
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[163794-91-0] 10g/Â¥54,000
TSCA HMIS: 3-2-1-X

SIC2452.0
3-CYANOPROPYLDIMETHYLCHLOROSILANE 161.71 108-9°/15 0.986 1.4460
CH3
flashpoint: 85°C (185°F)
4-(CHLORODIMETHYLSILYL)BUTYRONITRILE
C6H12ClNSi
N C CH2CH2CH2Si Cl
coupling agent for antibodies1.
CH3 1. S. Falipou et al, Bioconjugate Chem., Am. Chem. Soc., 1989
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
[18156-15-5] 25g/Â¥15,300 100g/Â¥49,500
TSCA HMIS: 3-2-1-X

SIC2453.0
Cl 3-CYANOPROPYLMETHYLDICHLOROSILANE 182.12 79-82°/1 1.14525 1.455125
CH3 C5H9Cl2NSi TOXICITY- oral, rat, LD50: 2830mg/kg
N C CH2CH2CH2Si
see also SIC2448.0 flashpoint: 92°C (198°F)
Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
[1190-16-5] 25g/Â¥15,800 100g/Â¥51,300
TSCA HMIS: 3-2-1-X

SIC2453.5
OCH 3
3-CYANOPROPYLMETHYLDIMETHOXYSILANE 173.29 82-3°/3 0.9970 1.4235
N C CH2CH2CH2Si CH3 C7H15NO2Si
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OCH 3 5.0g/Â¥12,200 25g/Â¥48,600
HMIS: 3-2-1-X

SIC2454.0
Cl 3-CYANOPROPYLTRICHLOROSILANE 202.54 93-4°/8 1.302 1.465
C4H6Cl3NSi flashpoint: 75°C (167°F)
N C CH2CH2CH2Si Cl see also SIC2449.0
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
Cl
[1071-22-3] 25g/Â¥9,900 100g/Â¥32,400
TSCA HMIS: 3-2-1-X

SIC2455.0
OC2H5 3-CYANOPROPYLTRIETHOXYSILANE 231.37 79-80°/0.6 0.961 1.4174
C H21NO3Si TOXICITY- oral rat, LD50: 2460mg/kg
OC2H5 10 viscosity: 2.3 cSt
N C CH2CH2CH2Si flashpoint: 74°C (165°F)
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OC2H5
[1067-47-6] 25g/Â¥13,500 100g/Â¥42,300
TSCA HMIS: 3-2-1-X

SIC2456.0
OCH 3
3-CYANOPROPYLTRIMETHOXYSILANE 189.29 90-2°/7 1.02625 1.4167
N C CH2CH2CH2Si OCH 3 C7H15NO3Si
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OCH 3 [55453-24-2] 10g/Â¥13,500 50g/Â¥63,000
TSCA-L HMIS: 3-2-1-X

SIC2456.3
11-CYANOUNDECYLTRICHLOROSILANE 314.76 162-4°/1 1.075
C12H22Cl 3NSi
long-chain organofunctional silane
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[724460-16-6] 5.0g/Â¥65,700
HMIS: 3-2-1-X



(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
61
Gelest, Inc.

Hydrophilic Silane Properties
Polar - Hydrogen Bonding

name MW bp/mm (mp) D420 nD20
SIA0006.0
ACETAMIDOPROPYLTRIMETHOXYSILANE 221.33 162-5°/2-3 1.4410
C8H19NO4Si
[57757-66-1] HMIS: 3-2-1-X 10g/Â¥54,000

SIA0010.0
O CH3
ACETOXYETHYLDIMETHYLCHLOROSILANE 180.71 108-9°/50 1.03125 1.430125
CH3COCH 2CH2Si Cl C6H13ClO2Si flashpoint: 63°C (145°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
CH3 [18306-45-1] 25g/Â¥26,100
HMIS: 3-2-1-X


O Cl SIA0015.0
ACETOXYETHYLMETHYLDICHLOROSILANE 201.12 117°/62 1.17725 1.439025
CH3COCH 2CH2Si CH3 C5H10Cl2O2Si flashpoint: 65°C (149°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl [18163-34-3] 25g/Â¥23,400
TSCA HMIS: 3-2-1-X


O Cl SIA0020.0
ACETOXYETHYLTRICHLOROSILANE 221.54 143°/70 1.27225 1.442725
CH3COCH 2CH2Si Cl C4H7Cl3O2Si flashpoint: 82°C (180°F)
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl [18204-80-3] 25g/Â¥21,600 100g/Â¥70,200
TSCA HMIS: 3-2-1-X


SIA0025.0
O OC2H5 ACETOXYETHYLTRIETHOXYSILANE 250.35 60°/0.2 0.983 1.410
C10H22O5Si
CH3COCH 2CH2Si OC2H5 >280° rearranges to acetoxytriethoxysilane w/ extrusion of ethylene1.
1. K. Ezbiansky et al, in “Chemical Process. of Dielectrics, Insulators & Electronic Ceramics MRS Proc. 2000.
OC2H5 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[22538-45-0] 25g/Â¥20,700
HMIS: 2-2-1-X

O OCH 3 SIA0030.0
ACETOXYETHYLTRIMETHOXYSILANE, 95% 208.29 108-9°/27 1.061
CH3COCH 2CH2Si OCH 3 C7H16O5Si
OCH 3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[72878-29-6] 25g/Â¥21,600
HMIS: 3-3-1-X


SIA0040.0
O CH3 O
ACETOXYMETHYLDIMETHYLACETOXY- 190.27 66-9°/7 1.0420 1.4388
SILANE flashpoint: 63°C (145°F)
CH3COCH 2Si OCCH 3
C7H14O4Si
CH3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[5833-57-8] 25g/Â¥30,600
HMIS:3-2-1-X


SIA0050.0
O OC2H5
ACETOXYMETHYLTRIETHOXYSILANE 236.34 106°/15 1.04225 1.4092
C9H20O5Si
CH3COCH 2Si OC2H5
hydrolyzes to form stable silanol solutions in neutral water
OC2H5 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[5630-83-1] 25g/Â¥24,800 100g/Â¥80,600
HMIS: 2-2-1-X


O OCH 3 SIA0055.0
ACETOXYMETHYLTRIMETHOXYSILANE, 95% 194.26 190-1° 1.085
CH3COCH 2Si OCH 3 C6H14O5Si flashpoint: 56°C (133°F)
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OCH 3 [65625-39-0] 10g/Â¥20,300 50g/Â¥81,000
TSCA-L HMIS: 3-3-1-X


SIA0078.0
O OCH 3
2-[ACETOXY(POLYETHYLENEOXY)- 500-700 1.04
CH3CO(CH 2CH2O) 6-9(CH2)3Si OCH 3
PROPYL]TRIETHOXYSILANE 95%
OCH 3 25g/Â¥35,100
HMIS: 2-1-1-X



PLEASE INQUIRE ABOUT BULK QUANTITIES
62
Gelest, Inc.




HYDROGEN BONDING HYDROPHILIC
name MW bp/mm (mp) D420 nD20
SIA0090.0
ACETOXYPROPYLMETHYLDICHLORO- 215.15 142°/73 1.15125 1.443425
O Cl
SILANE flashpoint: 85°C (185°F)
C6H12Cl2O2Si
CH3COCH 2CH2CH2Si CH3
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Cl [5290-24-4] 25g/Â¥24,800
TSCA HMIS: 3-2-1-X


SIA0100.0
O OCH 3 ACETOXYPROPYLTRIMETHOXYSILANE 222.31 92°/2 1.062 1.4146
C8H18O5Si flashpoint: 93°C (200°F)
CH3COCH 2CH2CH2Si OCH 3
γc of treated surface: 37.5 dynes/cm
OCH 3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[59004-18-1] 25g/Â¥8,100 100g/Â¥26,100
HMIS: 3-1-1-X


SIA0114.0
O 11-ACETOXYUNDECYLTRICHLOROSILANE 347.78 147-9°/1 1.084
C13H25Cl3O2Si flashpoint: >110°C (>230°F)
CH3COCH 2(CH2)10SiCl3
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
10g/Â¥36,000
HMIS: 3-1-1-X

SIA0120.0
(N-ACETYLGLYCYL)-3-AMINOPROPYL- 293.37
TRIMETHOXYSILANE
O O C10H21N2O6Si
amino acid-tipped silane
CH3CONCH 2CNHCH 2CH2CH2Si(OCH 3)3
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
5.0g/Â¥59,400
HMIS: 3-2-1-X

SIA0599.4
N-3-[(AMINO(POLYPROPYLENOXY)]AMINO- 337-435 0.984 1.4508
PROPYLTRIMETHOXYSILANE 60-65% 3-4 propyleneoxy units
CH3 CH3
contains 30-35% amine terminated polypropylene oxide
H2N(CH 2CHO) 2CH2CHNHCH 2CH2CH2Si(OCH 3)3
coupling agent with film-forming capability
25g/Â¥32,400
HMIS: 2-2-1-X

SIB0959.0
O
BENZOYLOXYPROPYLTRIMETHOXYSILANE 284.38 145°/0.2 1.104 1.4806
C O(CH 2)3Si(OCH 3)3
C13H20O5Si
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[76241-02-6] 25g/Â¥28,800
TSCA-L HMIS: 3-2-1-X


SIB1815.1
1,3-BIS(3-TRICHLOROSILYLPROPOXY)-2- 583.40 190-200°/0.4 1.158
DECYLOXYPROPANE
C19H38O3Cl6Si2
dipodal C18 analog w/buried hydrophilicity
10g/Â¥55,800
HMIS: 3-1-1-X

SIB1815.3
3,3-BIS(TRICHLOROSILYLPROPOXYMETHYL)- 597.42 220-2°/0.9 1.13
O
5-OXA-TRIDECANE
O CH 2 C CH 2 O
C20H40O3Cl6Si2
CH 2 CH 2
CH 2
dipodal hydrophobic surface treatment with buried hydrophilicity for chromatography
CH 2 CH 2
CH 3
CH 2 CH 2
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
Si Si
10g/Â¥37,800
HMIS: 3-1-1-X
Cl Cl Cl Cl Cl Cl

O O
SIB1824.82
C O (CH2CH2O) C
n
NH
HN
BIS[N,N'-(TRIETHOXYSILYLPROPYL)AMINO- 1000-1200 1.085
CH2
CH2
CARBONYL]POLYETHYLENE OXIDE (10-15 EO)
CH2
CH2
dipodal hydrophilic silane
CH2
CH2
[178884-91-8] TSCA HMIS: 1-1-1-X 25g/Â¥27,000
Si(OC2H5)3
(C2H5O) 3Si


SIB1824.84
CH3CH2O OCH 2CH3
BIS(TRIETHOXYSILYLPROPYL)POLY- 1400-1600
CH3CH2O Si CH2CH2CH2O(CH 2CH2O) CH3CH2CH2Si OCH 2CH3
ETHYLENE OXIDE (25-30 EO)
25-30
OCH 2CH3
CH3CH2O

25g/Â¥46,800
HMIS: 2-1-1-X


FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
63
Gelest, Inc.



name MW bp/mm (mp) D420 nD20
SIB1827.0
S
BIS[3-(TRIETHOXYSILYL)PROPYL]THIO- 484.40
C
HNNH
UREA tech -90
CH2
CH2
C19H44N2O6SSi2
CH2
CH2 forms films on electrodes for determination of mercury1.
CH2
CH2 1. Y. Guo et al, J. Pharm. Biol. Anal., 19, 175, 1999
Si(OC2H5)3
(C2H5O)3Si [69952-89-2] HMIS: 2-1-1-X 25g/Â¥60,300

SIB1828.0
BIS[3-(TRIETHOXYSILYL)PROPYL]UREA, 60% 468.73 0.923
H
in ethanol flashpoint: 24°C (75°F)
((C2H5O)3SiCH2CH2CH2 N)2 C O C H N O Si
19 44 2 7 2
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[69465-84-5] 25g/Â¥14,400 100g/Â¥46,800
HMIS: 2-1-1-X

SIB1835.5
BIS(TRIMETHOXYSILYLPROPYL)UREA, 95% 384.58
C13H32N2O7Si2 flashpoint: >110°C (>230°F)
amber liquid
viscosity: 200-250 cSt.
[18418-53-6] 25g/Â¥8,600 100g/Â¥27,900
TSCA HMIS: 3-2-1-X


SIC2065.0
10-(CARBOMETHOXY)DECYLDIMETHYL- 292.92 133°/0.3 0.950 1.448325
O CH3
CHLOROSILANE flashpoint: 105°C (221°F)
CH3OC(CH 2)10Si Cl C14H29ClO2Si
long-chain organofunctional silane
CH3 HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
10g/Â¥18,000 50g/Â¥72,000
[53749-38-5] HMIS: 3-1-1-X

SIC2067.0
10-(CARBOMETHOXY)DECYLDIMETHYL- 288.50 130°/0.3 0.903 1.4394
O CH3
METHOXYSILANE
CH3OC(CH 2)10Si OCH 3 C15H32O3Si
long-chain organofunctional silane
CH3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
10g/Â¥21,600 50g/Â¥86,400
HMIS: 2-1-1-X

SIC2068.0
O Cl 2-(CARBOMETHOXY)ETHYLMETHYL- 201.12 98-9°/25 1.18725 1.443925
DICHLOROSILANE, 95% flashpoint: 52°C (126°F)
CH3OCCH 2CH2Si CH3 C5H10Cl2O2Si
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
Cl
25g/Â¥33,300
[18163-42-3] TSCA HMIS: 3-2-1-X

SIC2070.0
2-(CARBOMETHOXY)ETHYLTRICHLORO- 221.54 90-2°/25 1.325 1.448
O Cl SILANE, 95% contains ~ 20% 1-(carbomethoxy)ethyltrichlorosilane isomer
flashpoint: > 43°C (>110°F)
METHYL(3-TRICHLOROSILYLPROPIONATE)
CH3OCCH 2CH2Si Cl
C4H7Cl3O2Si
Cl HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
25g/Â¥15,300 100g/Â¥49,500
[18147-81-4] TSCA HMIS: 3-3-1-X


SIC2072.0
2-(CARBOMETHOXY)ETHYLTRIMETHOXY- 208.29 1.069 1.410
O OCH 3
SILANE, 95% contains ~ 20% 1-(carbomethoxy)ethyltrimethoxysilane isomer
CH3OCCH 2CH2Si OCH 3 flashpoint: > 43°C (>110°F)
METHYL(3-TRIMETHOXYSILYLPROPIONATE)
C7H16O5Si
OCH 3
[76301-00-3] HMIS: 3-3-1-X 10g/Â¥39,600

SID4465.0
N,N-DIOCTYL-N�-TRIETHOXYSILYLPROPYLUREA 488.83 0.92425 1.452125
CH3CH2CH2CH2CH2CH2CH2CH2 O
C26H56N2O4Si
N C N(CH 2)3Si(OC2H5)3
forms hydrophobic phases with embedded hydrophilicity
H
CH3CH2CH2CH2CH2CH2CH2CH2
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[259727-10-1] 25g/Â¥36,900
HMIS: 2-2-1-X



PLEASE INQUIRE ABOUT BULK QUANTITIES
64
Gelest, Inc.




HYDROGEN BONDING HYDROPHILIC
name MW bp/mm (mp) D420 nD20
SIM6491.5
METHOXYETHOXYUNDECYLTRICHLOROSILANE 363.83 145-9°/1.25 1.07
C14H29Cl3O2Si
CH3OCH 2CH2O(CH 2)11SiCl3 forms self-assembled monolayers with “hydrophilic tips�
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
5.0g/Â¥32,400
HMIS: 3-2-1-X


SIM6492.66
2-[METHOXY(POLYETHYLENEOXY)PROPYL]- 472-604 1.13
TRICHLOROSILANE, 90%
CH3O(C2H4O)6-9C3H6Cl3Si
CH3O (CH2CH2O)6-9 (CH2)3SiCl3
forms hydrophilic surfaces
provides protein antifouling surface1.
1. F. Cecchet et al., Langmuir, 22, 1173, 2006
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture
[36493-41-1] 10g/Â¥34,200
HMIS: 3-2-1-X

SIM6492.7
2-[METHOXY(POLYETHYLENEOXY)PROPYL]- 460-590 (-8°)mp 1.076 1.403
CH3O (CH2CH2O)6-9 (CH2)3Si(OCH 3)3
TRIMETHOXYSILANE, 90% flashpoint: 88°C (190°F)
CH3(OC2H4)6-9(CH2)3OSi(OCH3)3 viscosity: 29 cSt
reduces non-specific binding of proteins
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[65994-07-2] 25g/Â¥34,200 100g/Â¥111,000
TSCA HMIS: 2-2-1-X


CH3O (CH2CH2O) 9-12 (CH2)3Si(OCH 3)3 SIM6492.72
2-[METHOXY(POLYETHYLENEOXY)PROPYL]- 596-725 1.09
TRIMETHOXYSILANE, 90% flashpoint: 88°C(190°F)
CH3(OC2H4)9-12(CH2)3Si(OCH3)3
[65994-07-2] TSCA HMIS: 2-2-1-X 25g/Â¥34,200 100g/Â¥111,000

CH3OCH 2CH2CH2Si(OCH 3)3 SIM6493.0
3-METHOXYPROPYLTRIMETHOXYSILANE 194.30 98-9°/40 0.995
C7H18O4Si flashpoint: 53°C (127°F)
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[33580-59-5] 25g/Â¥14,400 100g/Â¥46,800
HMIS: 3-2-1-X


CH3O (CH2CH2O)3 (CH2)3SiCl3 SIM6493.2
METHOXYTRIETHYLENOXYPROPYLTRI- 339.71 140°/0.2 1.163
CHLOROSILANE
C10H21Cl3O4Si
[228700-87-6] HMIS: 3-2-1-X 10g/Â¥54,900
SIM6493.4
CH3O (CH2CH2O)3 (CH2)3Si(OCH 3)3 METHOXYTRIETHYLENOXYPROPYLTRI- 326.46 148°/0.3 1.034
METHOXYSILANE
C13H30O7Si
forms polymeric proton-conducting electrolytes1.
1. J. Ritchie et al, Chem. Mater., 18, 504, 2006
[132388-45-5] HMIS: 3-2-1-X 10g/Â¥57,600

SIT8186.0
(2-TRIETHOXYSILYLPROPOXY)ETHOXY- 384.56 190-4°/0.4 1.122
O CH2CH2OCH 2CH2CH2Si(OCH 2CH3)3
SULFOLANE, 95%
C15H32O7SSi
S
forms hydrophilic surfaces
O O
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[502925-40-8] 10g/Â¥28,800
HMIS: 2-2-1-X

SIT8717.0
CH2CH2CH2Si(OCH 3)3
TRIS(3-TRIMETHOXYSILYLPROPYL)ISO 615.86 1.170 1.4610
N
O O
CYANURATE, 95% flashpoint: 102°C (216°F)
C C
C21H45N3O12Si3 viscosity: 325-350 cSt.
(CH3O)3SiCH2CH2CH2 N N CH2CH2CH2Si(OCH 3)3
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
C
[26115-70-8] 25g/Â¥5,400 100g/Â¥17,600 2.0kg/Â¥133,000
TSCA HMIS: 2-1-1-X
O


FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
65
Gelest, Inc.

Hydrophilic Silane Properties
Hydroxylic
name MW bp/mm (mp) D420 nD20
SIB1140.0
BIS(2-HYDROXYETHYL)-3-AMINOPROPYL- 309.48 0.92 1.40925
TRIETHOXYSILANE, 62% in ethanol flashpoint: 24°C (75°F)
C13H31NO5Si specific wetting surface: 252m2/g
HOCH 2CH2
contains 2-3% hydroxyethylaminopropyltriethoxysilane
NCH 2CH2CH2Si(OEt) 3
urethane polymer coupling agent
HOCH 2CH2
employed in surface modification for preparation of oligonucleotide arrays1.
1. G. McGall et al, Proc. Nat'l Acad. Sci., 93, 1355, 1996.
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[7538-44-5] 25g/Â¥13,500 100g/Â¥44,100
TSCA HMIS: 3-4-0-X
(CH 3O) 3SiCH 2CH 2CH 2
SIB1142.0
NCH 2CH 2OH
N,N�-BIS(HYDROXYETHYL)-N,N�-BIS- 472.73 0.985
CH 2
(TRIMETHOXYSILYLPROPYL)ETHYLENEDIAMINE 66-68% in methanol
CH 2
C18H44N2O8Si2 flashpoint: 11°C(52°F)
NCH 2CH 2OH
[214362-07-9] HMIS: 3-4-1-X 25g/Â¥29,700
(CH 3O) 3SiCH 2CH 2CH 2

SIB1824.2
OH
OH

BIS-[3-(TRIETHOXYSILYLPROPOXY)- 700-800
OCH 2CHCH 2 O (CH2CH2O) CH2CHCH 2O
5-10
CH2
CH2
2-HYDROXYPROPOXY]POLYETHYLENE OXIDE 65% in methanol
CH2
CH2
25g/Â¥33,300
HMIS: 2-4-1-X
CH2
CH2
Si(OC2H5)3
(C2H5O)3Si
SIB1824.4
2,2-BIS(3-TRIETHOXYSILYLPROPOXY- 542.86 0.899
METHYL)BUTANOL, 50% in ethanol
CH2OCH 2CH2CH2Si(OC2H5)3
C24H54O9Si2 for solid state synthesis of oligonucleotides
HOCH 2CCH2CH3
for solid state synthesis of oligonucleotides
CH2OCH 2CH2CH2Si(OC2H5)3
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
10g/Â¥61,200
HMIS: 2-4-1-X

SIH6188.0
[HYDROXY(POLYETHYLENEOXY)PROPYL]- 500-550 0.889 1.401
HO (CH2CH2O) 6-9(CH2)3Si(OCH 2CH3)3
TRIETHOXYSILANE, (8-12 EO) 50% in ethanol
25g/Â¥35,100
HMIS: 2-4-1-X

SIH6172.0
N-(HYDROXYETHYL)-N-METHYLAMINO- 237.37 0.99 1.417
HOCH 2CH2
NCH 2CH2CH2Si(OCH 3)3
PROPYLTRIMETHOXYSILANE, 75% in methanol
H3C
C9H23NO4Si flashpoint: 16°C (61°F)
25g/Â¥23,400 100g/Â¥76,100
HMIS: 3-4-1-X
OC2H5
SIH6175.0
HO CH2 Si OC2H5 HYDROXYMETHYLTRIETHOXYSILANE, 50% 194.31 0.866
in ethanol
OC2H5
TRIETHOXYSILYLMETHANOL
+
C7H18O4Si contains equilibrium condensation oligomers
OC2H5 OC2H5
hydrolysis yields analogs of silica- hydroxymethylsilanetriol polymers1.
HO CH2 Si O CH2 Si OC2H5
1. B. Arkles, US Pat. 5,371,262, 1994.
OC2H5 OC2H5
[162781-73-9] HMIS: 2-4-0-X 25g/Â¥43,200
SIT8189.0
O
N-(3-TRIETHOXYSILYLPROPYL)GLUCONAMIDE 399.51 0.951
C NH(CH 2)3Si(OC 2H 5)3
50% in ethanol flashpoint: 8°C (46°F)
H OH
C15H33NO9Si
HO H
water soluble, hydrophilic silane
H OH
[104275-58-3] HMIS: 2-4-1-X 25g/Â¥11,700 100g/Â¥37,800
H OH
CH 2OH
SIT8189.5
N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXY- 307.47 1.02 1.4533
BUTYRAMIDE
O
C13H29NO5Si
HOCH 2CH2CH2CNCH 2CH2CH2Si(OC2H5)3
anchoring reagent for light-directed synthesis of DNA on glass1.
H
1. G. McGall et al, J. Am. Chem. Soc., 119, 5081, 1997.
[186543-03-3] HMIS: 2-2-1-X 10g/Â¥13,100 50g/Â¥52,200
SIT8192.0
N-(TRIETHOXYSILYLPROPYL)-O-POLY- 400-500 1.09 1.454025
ETHYLENE OXIDE URETHANE, 95% viscosity: 75-125 cSt
COMMERCIAL




C10H22NO4SiO(CH2CH2O)4-6H
(C2H5O)3Si
contains some bis(urethane) analog
CH2
hydrophilic surface modifier
H(OCH 2CH2)4-6 OCNHCH 2CH2
stabilizes Si3N4 aqueous colloids1.
O 1. J. Yanez et al, J. Eur. Ceram. Soc., 18, 1993, 1998
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[74695-91-3] 25g/Â¥10,800 100g/Â¥35,100 2kg/Â¥254,000
HMIS: 2-1-1-X

66
Gelest, Inc.


Hydrophilic Silane Properties
Ionic-Charge Inducible




HYDROXYLIC HYDROPHILIC / IONIC HYDROPHILIC
name MW bp/mm (mp) D420 nD20

SIB0957.0
(2-N-BENZYLAMINOETHYL)-3-AMINOPROPYL- 348.25 0.942 1.4104
-
Cl
H H
TRIMETHOXYSILANE, hydrochloride 50% in methanol
+
CH2 NCH 2CH2NCH 2CH2CH2Si(OCH 3)3
C15H28N2O3Si.HCl amber liquid flashpoint: 9°C (48°F)
H
[623938-90-9] TSCA HMIS: 3-3-1-X 25g/Â¥7,200 100g/Â¥23,400

SIB1835.0
(CH3O)3SiCH2CH2CH2 BIS(3-TRIMETHOXYSILYLPROPYL)- 355.58 175°/10 1.023 1.4300
N-METHYLAMINE flashpoint: 106°C (223°F)
N CH3
C13H33NO6Si2
(CH3O)3SiCH2CH2CH2 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[31024-70-1] 25g/Â¥28,800 100g/Â¥93,600
HMIS: 2-1-0-X

SIC2263.0
O OH CARBOXYETHYLSILANETRIOL, SODIUM 196.14 1.1725
+- - + SALT, 25% in water pH:12-12.5
Na OCCH 2CH2Si O Na
C3H6O5Na2Si
OH HYDROLYTIC SENSITIVITY: 0 forms stable aqueous solutions
[18191-40-7] 25g/Â¥18,900 100g/Â¥61,200
HMIS: 2-0-0-X

SIC2415.0
2-(4-CHLOROSULFONYLPHENYL)ETHYLTRI- 338.11 1.37
CHLOROSILANE, 50% in methylene chloride
ClSO2 CH2CH2SiCl3
C8H8Cl4O2SSi
contains 30% free sulfonic acid analog and small amounts of silylsulfonic acid condensation products
Solid Phase employed in preparation of solid phase extraction columns
Extraction (SPE) HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
columns with [79793-00-3] 25g/Â¥20,300 100g/Â¥66,600
TSCA HMIS: 4-2-2-X
benzenesulfonic
acid functionalized SIC2415.4
silica are utilized 2-(4-CHLOROSULFONYLPHENYL)ETHYLTRI- 338.11 1.08
to analyze urine CHLOROSILANE, 50% in toluene
samples for amino C8H8Cl4O2SSi
acids and drugs contains 30% free sulfonic acid analog and small amounts of silylsulfonic acid condensation products
of abuse. HYDROLYTIC SENSITIVITY: 8 reacts rapidly with water/moisture, protic solvents
[79793-00-3] 25g/Â¥22,100 100g/Â¥71,600
TSCA HMIS: 4-4-2-X

SIC2417.0
2-(4-CHLOROSULFONYLPHENYL)ETHYLTRI- 324.85 1.3025
METHOXYSILANE, 50% in methylene chloride
C11H17ClO5SSi contains free sulfonic acid; amber color
treated silica acts as etherification catalyst1.
ClSO2 CH2CH2Si(OCH 3)3
treatment of surface oxidized PMDSO supports electroosmotic flow 2.
1. B. Sow et al, Microporous & Mesoporous Materials, 79, 129, 2005
2. B. Wang et al, Micro Total Analysis Systems 2004 Vol 2., Roy Soc. Chem., 297, p109
[126519-89-9] HMIS: 3-2-1-X 25g/Â¥30,600 100g/Â¥99,500

SID3392.0
N,N-DIDECYL-N-METHYL-N-(3-TRIMETHOXYSILYL- 510.32 0.863 1.4085
CH3(CH2)9 + CH3 Cl- PROPYL)AMMONIUM CHLORIDE, 42% in methanol flashpoint: 13°C (55°F)
N
C27H60ClNO3Si contains 3-5% Cl(CH2)3Si(OMe)3
CH3(CH2)9 CH2CH2CH2Si(OCH 3)3 HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[68959-20-6] 25g/Â¥20,700
TSCA HMIS: 3-4-0-X

SID3395.4
DIETHYLAMINOMETHYLTRIETHOXYSILANE 249.43 74-6°/3 0.933625 1.414225
OCH 2CH3
CH3CH2 C11H27NO3Si
NCH 2Si OCH 2CH3 catalyst for neutral cure 1-part RTVs
CH3CH2
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
OCH 2CH3
[15180-47-9] 25g/Â¥22,100
HMIS: 2-2-1-X



FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
67
Gelest, Inc.


name MW bp/mm (mp) D420 nD20
SID3396.0
(N,N-DIETHYL-3-AMINOPROPYL)TRI- 235.40 120°/20 0.934 1.423
METHOXYSILANE flashpoint: 100°C (212°F)
CH3CH2
NCH 2CH2CH2Si(OCH 3)3 C10H25NO3Si
CH3CH2
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[41051-80-3] 25g/Â¥26,100 100g/Â¥84,600
TSCA HMIS: 2-2-1-X


SIO6620.0
OCTADECYLDIMETHYL(3-TRIMETHOXYSILYL- 496.29 0.89
PROPYL)AMMONIUM CHLORIDE, 60% in methanol
C26H58ClNO3Si contains 3-5% Cl(CH2)3Si(OMe)3 flashpoint: 15°C (59°F)
COMMERCIAL
-
Cl CH3
employed as lubricant/anti-static surface treatment
+
CH3(CH2)17 N (CH2)3Si(OCH 3)3 orients liquid crystals
dispersion/coupling agent for high density magnetic recording media1.
CH3
application as immobilizeable antimicrobial reported2.
1. H. Vincent in “Chemically Modified Oxide Surfaces,� ed. D. Leyden, Gordon & Breach,1990, p. 305.
2. W. White et al in “Silanes, Surfaces & Interfaces� ed. D. Leyden, Gordon & Breach, 1986, p. 107.
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[27668-52-6] 25g/Â¥10,800 2kg/Â¥98,000
TSCA HMIS: 3-4-0-X

SIP6926.2
2-(2-PYRIDYLETHYL)THIOPROPYLTRI- 301.48 156-7°/0.25 1.089 1.498
OCH 3
METHOXYSILANE
CH2CH2SCH 2CH2CH2Si OCH 3
N C13H23NO3SSi
OCH 3
chelates metal ions
[29098-72-4] HMIS: 3-2-1-X 10g/Â¥53,100
SIP6926.4
2-(4-PYRIDYLETHYL)THIOPROPYLTRI- 301.48 160-2°/0.2 1.09 1.5037
OCH 3
METHOXYSILANE pKa: 4.8
N CH2CH2SCH 2CH2CH2Si OCH 3 C13H23NO3SSi
OCH 3
immobilizeable ligand for immunoglobulin IgG separation using hydrophobic
charge induction chromatography (HCIC)
[198567-47-4] HMIS: 3-2-1-X 10g/Â¥55,800

SIP6928.0
CH2 CH2 Si(OCH 2CH3)3
2-(4-PYRIDYLETHYL)TRIETHOXYSILANE 269.43 105°/0.9 1.00 1.462424
C13H23NO3Si amber liquid
see also SIT8396.0
HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[98299-74-2] 10g/Â¥50,400
HMIS: 3-2-1-X
N
SIT8157.0
2-[2-(TRICHLOROSILYL)ETHYL]PYRIDINE 240.59 280°-decomposes
C7H8Cl3NSi (207°)mp
fuming solid, moisture sensitive
CH2CH2SiCl3
N HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
[17082-69-8] 25g/Â¥18,900 100g/Â¥61,200
TSCA HMIS: 3-2-1-X

SIT8158.0
4-[2-(TRICHLOROSILYL)ETHYL- 240.59 0.93
CH2CH2SiCl3 PYRIDINE, 15-20% in toluene flashpoint: 4°C (39°F)
C7H8Cl3NSi hazy liquid; extremely moisture sensitive
see also SIT8396.0 2-(TRIMETHOXYSILYLETHYL)PYRIDINE
employed in polypyridine self-assembled monolayers1.
1. S. Paulson et al, J. Chem. Soc. Chem. Comm., 21, 1615, 1992.
HYDROLYTIC SENSITIVITY: 8 reacts rapidly with moisture, water, protic solvents
N
[17082-70-1] 25g/Â¥10,800 100g/Â¥43,200
TSCA HMIS: 3-4-1-X




PLEASE INQUIRE ABOUT BULK QUANTITIES
68
Gelest, Inc.

name MW bp/mm (mp) D420 nD20
SIT8187.5
N-(3-TRIETHOXYSILYLPROPYL)- 274.43 134°/2 1.005 1.452
4,5-DIHYDROIMIDAZOLE flashpoint: >110°C (>230°F)
3-(2-IMIDAZOLIN-1-YL)PROPYLTRIETHOXYSILANE




COMMERCIAL
C12H26N2O3Si viscosity: 5 cSt.
OC2H5
utilized in HPLC of metal chelates1.
N CH2CH2CH2Si OC2H5 forms proton vacancy conducting polymers w/sulfonamides by sol-gel2.
N
ligand for molecurlarly imprinting silica w/ chymotrypsin transition state analog3.
OC2H5
1. T. Suzuki et al, Chem. Lett, 881, 1994.
2. V. De Zea Bermudez et al, Sol-Gel Optics II, SPIE Proc. 1728, 180, 1992.
3. M. Markowitz et al, Langmuir, 1989.
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[58068-97-6] 25g/Â¥8,100 100g/Â¥27,900 2.0kg/Â¥238,000
TSCA HMIS: 2-1-1-X

SIT8378.3
O 3-(TRIHYDROXYSILYL)-1-PROPANE- 202.26 (-62°) 1.12
SULFONIC ACID 30-35% in water pH: <1
HOSCH 2CH2CH2Si(OH) 3
C3H10O6SSi
HYDROLYTIC SENSITIVITY: 0 forms stable aqueous solutions
O
[70942-24-4] 25g/Â¥21,600 100g/Â¥74,700
TSCA HMIS: 3-0-0-X

SIT8378.5
O 3-TRIHYDROXYSILYLPROPYLMETHYL- 238.18 1.25
PHOSPHONATE, SODIUM SALT, 42% in water flashpoint: 79°C (174°F)
CH3PO(CH 2)3Si(OH) 3
C4H12NaO6PSi contains 4-5% methanol, sodium methylphosphonate
- +
O Na HYDROLYTIC SENSITIVITY: 0 forms stable aqueous solutions
[84962-98-1] 100g/Â¥6,800 500g/Â¥27,000
TSCA HMIS: 1-2-0-X

SIT8395.0
-
N-(TRIMETHOXYSILYLETHYL)BENZYL-N,N,N- 333.93 0.966
Cl
H3C +
TRIMETHYLAMMONIUM CHLORIDE, 60% in methanol
H3C N CH2
C15H28ClNO3Si flashpoint: 25°C (77°F)
H3C
CH2CH2Si(OCH 3)3 candidate for exchange resins and extraction phases
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
25g/Â¥36,000
HMIS: 3-3-1-X

SIT8396.0
2-(TRIMETHOXYSILYLETHYL)PYRIDINE 227.33 105°/0.3 1.06 1.4755
C10H17NO3Si see also SIP6928.0 flashpoint: >110°C (>230°F)
CH2CH2Si(OCH 3)3 HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
N [27326-65-4] 10g/Â¥17,600 50g/Â¥70,200
HMIS: 3-2-1-X

SIT8398.0




COMMERCIAL
H2NCH 2CH2HNCH 2CH2NH (3-TRIMETHOXYSILYLPROPYL)DIETHYLENE- 265.43 114-8°/2 1.030 1.4590
CH2 TRIAMINE tech-95 flashpoint: 137°C (279°F)
Ï’c of treated surface: 37.5 dynes/cm
C10H27N3O3Si
CH2
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
(CH3O)3SiCH2
[35141-30-1] 100g/Â¥8,600 2.0kg/Â¥86,800
TSCA HMIS: 3-1-1-X

SIT8402.0
+- - +
Na OOCCH 2 CH2COO Na N-(TRIMETHOXYSILYLPROPYL)ETHYLENE- 462.42 1.26
DIAMINE TRIACETIC ACID, TRISODIUM SALT, 45% in water
NCH 2CH2N
+-
C14H25N2Na3O9Si essentially silanetriol, contains NaCl
Na OOCCH 2 CH2
chelates metal ions
CH2
(CH3O)3SiCH2 HYDROLYTIC SENSITIVITY: 0 forms stable aqueous solutions
[128850-89-5] 25g/Â¥18,000 100g/Â¥58,500
TSCA HMIS: 2-0-0-X

SIT8405.0
N-(TRIMETHOXYSILYLPROPYL)ISOTHIO- 274.84 1.190 1.441
URONIUM CHLORIDE, 50% in water
essentially silanetriol
-
+ Cl
H2N
C S CH2CH2CH2Si(OCH 3)3 TRIHYDROXYPROPYLCARBAMIDOTHIOIC ACID HYDROCHLORIDE
C7H19ClN2O3SSi pH: 6
H2N
antimicrobial activity reported
HYDROLYTIC SENSITIVITY: 0 forms stable aqueous solutions
[84682-36-0] 25g/Â¥18,900
TSCA HMIS: 2-0-0-X

SIT8412.0
N-TRIMETHOXYSILYLPROPYL-N,N,N-TRI- 428.52 0.92
-
C4H9 n-BUTYLAMMONIUM BROMIDE, 50% in methanol
Br
+
C18H42BrNO3Si flashpoint: 11°C (52°F)
C4H9 N CH2CH2CH2Si(OCH 3)3
immobilizable phase transfer catalyst
C4H9 HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
25g/Â¥37,800
HMIS: 3-4-1-X


(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
69
Gelest, Inc.


name MW bp/mm (mp) D420 nD20
SIT8414.0
N-TRIMETHOXYSILYLPROPYL-N,N,N-TRI- 384.08 0.88
- n-BUTYLAMMONIUM CHLORIDE, 50% in methanol
C4H9 Cl
+
C18H42ClNO3Si flashpoint: 11°C (52°F)
C4H9 N CH2CH2CH2Si(OCH 3)3
contains 3-5% chloropropyltrimethoxysilane and Bu3NH+Cl-
C4H9 HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
25g/Â¥34,200
HMIS: 3-4-1-X

SIT8415.0
N-TRIMETHOXYSILYLPROPYL-N,N,N-TRI- 257.83 0.927 1.3966
METHYLAMMONIUM CHLORIDE, 50% in methanol
COMMERCIAL
CH3 - Cl N,N,N-TRIMETHYL-3-(TRIMETHOXYSILYL)-1-PROPANAMINIUM CHLORIDE
+ C9H24ClNO3Si flashpoint: 16°C (61°F)
H3C N CH2CH2CH2Si(OCH 3)3 employed for bonded chromatographic phases
anti-static agent
CH3
used to treat glass substrates employed in electroblotting
see also SIT8395.0
HYDROLYTIC SENSITIVITY: 7 reacts slowly with water/moisture
[35141-36-7] 25g/Â¥7,700 2.0kg/Â¥133,000
TSCA HMIS: 2-4-1-X




Polymeric Hydrophilic Silanes
Polymeric Amine
name MW bp/mm (mp) D420 nD20
SSP-060
TRIMETHOXYSILYLPROPYL MODIFIED 1500-1800 0.92
(POLYETHYLENIMINE) 50% in isopropanol
visc: 125-175 cSt ~20% of nitrogens substituted
H
-
+ Cl H employed as a coupling agent for polyamides1.
N
in combination with glutaraldehyde immobilizes enzymes2.
nN 4n
COMMERCIAL




1. B. Arkles et al, SPI 42nd Composite Inst. Proc., 21-C, 1987
Si(OCH 3)3 2. S. Cramer et al, Biotech. & Bioeng., 33(3), 344, 1989.
[136856-91-2] TSCA HMIS: 2-4-1-X 100g/Â¥12,600 2.0kg/Â¥127,000
SSP-065
H
- DIMETHOXYMETHYLSILYLPROPYL MODIFIED 1500-1800 0.92
+ Cl H
N
(POLYETHYLENIMINE) 50% in isopropanol
nN 4n
visc: 100-200 cSt ~20% of nitrogens substituted
primer for brass
Si(OCH 3)2
[1255441-88-5] TSCA HMIS: 2-4-1-X 100g/Â¥17,100 2.0kg/Â¥173,000
OCH 3



Water-borne Aminoalkyl Silsesquioxane Oligomers TSCA
Functional Molecular Weight % Specific
+
δ
H2 H2
C
N
2
CH
Code Group Mole % Weight in solution Gravity Viscosity pH Price/100g 3kg
H 2
CH
�
δO Si
Aminopropyl
WSA-7011 65-75 250-500 25-28 1.10 5-15 10-10.5 ¥13,100 ¥153,000
OH
3 O
CH n
2
CH
N Si
Aminopropyl
WSA-9911* 100 270-550 22-25 1.06 5-15 10-10.5 ¥10,800 ¥126,000
H2
OH
C 2 O
CH
2
H m
Aminoethylaminopropyl 65-75
Si
H δ� WSA-7021 370-650 25-28 1.10 5-10 10-11 ¥13,100 ¥153,000
+
δ OH
O
2 O
NH
WSAV-6511** Aminopropyl, vinyl
Si H
60-65 250-500 25-28 1.11 3-10 10-11 ¥15,800 ¥168,000
O
C
H2 2
CH
2C
H
*CAS [29159-37-3] **[207308-27-8]




PLEASE INQUIRE ABOUT BULK QUANTITIES
70
Gelest, Inc.

Aqueous exposure of treated surfaces
Epoxy Functional Silanes
converts Epoxy-Silanes to Hydrophilic-Diols

Epoxy Functional Silanes - Trialkoxy
SIE4668.0
2-(3,4-EPOXYCYCLOHEXYL)ETHYL- 288.46 114-7°/0.4 1.015 1.4455
O CH2CH2Si(OC2H5)3
TRIETHOXYSILANE flashpoint: 104°C (220°F)
C14H28O4Si
[10217-34-2] TSCA HMIS: 2-1-1-X 25g/Â¥6,300 100g/Â¥20,700 2.0kg/Â¥112,000
SIE4670.0
2-(3,4-EPOXYCYCLOHEXYL)ETHYL- 246.38 95-7°/0.25 1.065 1.449
TRIMETHOXYSILANE TOXICITY- oral rat, LD50: 12,300mg/kg
C11H22O4Si flashpoint: 146°C (295°F)
γc of treated surface: 39.5 dynes/cm
viscosity: 5.2 cSt
coefficient of thermal expansion: 0.8 x 10-3 specific wetting surface: 317 m2/g
O
CH2CH2Si(OCH 3)3 vapor pressure, 152°: 10mm




COMMERCIAL
ring epoxide more reactive than glycidoxypropyl systems.
UV initiated polymerization of epoxy group with weak acid donors.
forms UV-cureable coating resins by controlled hydrolysis1.
1. J. Crivello et al, Chem. Mater. 9, 1554, 1997.
[3388-04-3] TSCA HMIS: 3-1-1-X 100g/Â¥4,400 1kg/Â¥8,800
O SIG5840.0
CH2CH CH2
(3-GLYCIDOXYPROPYL)TRIMETHOXYSILANE 236.34 120°/2 1.070 1.4290
O
(<-70°)mp
3-(2,3-EPOXYPROPOXY)PROPYLTRIMETHOXYSILANE
CH2CH2CH2
C9H20O5Si TOXICITY- oral rat, LD50: 8,400 mg/kg
CH3O Si OCH 3
coupling agent for epoxy composites employed in electronic “chip� encapsulation.
OCH 3 [2530-83-8] TSCA HMIS: 3-1-1-X 100g/Â¥4,400 1kg/Â¥8,800
O
SIG5839.0
CH2CH CH2
O
(3-GLYCIDOXYPROPYL)TRIETHOXYSILANE 278.4 124°/3 1.00 1.425
CH2CH2CH2
C12H26O5Si flashpoint: 144°C (291°F)
CH3CH2O Si OCH 2CH3
[2602-34-8] TSCA HMIS:3-2-1-X 25g/Â¥43,200
OCH 2CH3

SIG5840.1
O
CH2CH CH2 (3-GLYCIDOXYPROPYL)TRIMETHOXYSILANE 99+% 236.34 120°/2 1.070 1.4290
O
(<-70°)mp
3-(2,3-EPOXYPROPOXY)PROPYLTRIMETHOXYSILANE
CH2CH2CH2




DEVELOPMENTAL
C9H20O5Si TOXICITY- oral rat, LD50: 8,400 mg/kg
CH3O Si OCH 3
[2530-83-8] 25g/Â¥81,000 in fluoropolymer bottle
TSCA HMIS: 3-1-1-X
OCH 3

SIE4675.0
O 5,6-EPOXYHEXYLTRIETHOXYSILANE 262.42 115-9°/1.5 0.96025 1.425425
H2C CHCH 2CH2CH2CH2Si(OC2H5)3
C12H26O4Si flashpoint: 99°C (210°F)
10g/Â¥37,800
[86138-01-4] HMIS: 3-2-1-X

Epoxy Functional Silanes - Dialkoxy
SIG5832.0
O
(3-GLYCIDOXYPROPYL)METHYLDIETHOXY- 248.39 122-6°/5 0.97825 1.431


COMMERCIAL
CH2CH CH2
SILANE TOXICITY- oral rat, LD50: >2000mg/kg
O
C11H24O4Si flashpoint: 122°C (252°F)
CH2CH2CH2
viscosity: 3.0 cSt
C2H5O Si OC2H5
employed in scratch-resistant coatings for eyeglasses.
CH3
[2897-60-1] TSCA HMIS: 2-1-1-X 25g/Â¥17,100 100g/Â¥55,800 2.0kg/Â¥203,000
SIG5836.0
O
(3-GLYCIDOXYPROPYL)METHYLDIMETHOXY- 220.34 100°/4 1.02 1.43125
CH2CH CH2
O
SILANE flashpoint: 105°C (221°F)
CH2CH2CH2
C9H20O4Si
DEVELOPMENTAL




CH3O Si OCH 3
relative hydrolysis rate vs. SIG5840.0: 7.5:1
CH3
[65799-47-5] TSCA-L HMIS: 3-1-1-X 25g/Â¥22,500 100g/Â¥72,900

Epoxy Functional Silanes - Monoalkoxy
O
CH2CH CH2 SIG5825.0
O
(3-GLYCIDOXYPROPYL)DIMETHYLETHOXY- 218.37 100°/3 0.950 1.433725
CH2CH2CH2
SILANE flashpoint: 87°C (189°F)
CH3 Si CH3 C10H22O3Si
[17963-04-1] TSCA HMIS: 3-2-1-X 10g/Â¥17,100 50g/Â¥68,400
OC2H5


FAX: 03-5543-0312 www.azmax.co.jp
AZmax TEL: 03-5543-1630
(215) 547-1015 FAX: (215) 547-2484 www.gelest.com
71
Gelest, Inc.


Silyl Hydrides
Silyl Hydrides are a distinct class of silanes that behave and react very differently than conventional
silane coupling agents. Their application is limited to deposition on metals (see discussion on p. 17).
They liberate hydrogen on reaction and should be handled a with appropriate caution.
name MW bp/mm (mp) D420 nD20
SID4629.6
H DODECYLSILANE 200.44 80°/7 0.7753 1.438025
C12H28Si
CH3(CH2)10CH2Si H
forms SAMS on gold surfaces
H 872-19-5 HMIS: 2-2-1-X 10g/Â¥35,100

SIO6635.0
n-OCTADECYLSILANE 284.60 195°/15 0.794
H
C18H40Si contains 4-6% C18 isomers (29°)mp
CH3(CH2)16CH2 Si H forms self-assembled monolayers on titanium1. flashpoint: >110°C (>230°F)
1. A. Fadeau et al, J. Am. Chem. Soc., 121, 12184, 1999
H
[18623-11-5] TSCA HMIS: 2-1-1-X 25g/Â¥18,000 100g/Â¥58,500

SIT8173.0
(TRIDECAFLUORO-1,1,2,2-TETRA- 378.22 75°/251.446 1.3184
H
HYDROOCTYL)SILANE
CF3CF2CF2CF2CF2CF2CH2CH2Si H C8H7F13Si
provides vapor-phase hydrophobic surfaces on titanium, gold, silicon
H
[469904-32-3] HMIS: 3-3-1-X 10g/Â¥85,500

SIU9048.0
H
10-UNDECENYLSILANE 184.40 0.78
H2C CH(CH 2)8CH2Si H
C11H24Si
H 2.5g/Â¥81,000
HMIS: 2-3-1-X




MethylHydrosiloxane homopolymers are used as water-proofing agents, reducing agents and as components in some
foamed silicone systems.




Tg: -119° V.T.C: 0.50 CAS: [63148-57-2] TSCA
polyMethylHydrosiloxanes, Trimethylsiloxy terminated
Molecular Mole % Equivalent Specific Refractive
COMMERCIAL




Code Viscosity Weight (MeHSiO) Weight Gravity Index Price/100g Price/3 kg
HMS-991 15-25 1400-1800 100 67 0.98 1.395 ¥6,300 ¥43,200
HMS-992 25-35 1800-2100 100 65 0.99 1.396 ¥8,600 ¥60,300
HMS-993 35-45 2100-2400 100 64 0.99 1.396 ¥10,800 ¥75,600




PLEASE INQUIRE ABOUT BULK QUANTITIES
72
Gelest, Inc.


Surface Modification with Silanes: What’s not covered in “Hydrophobicity, Hydrophilicity
and Silane Surface Modification�?
Silanes which are expected to form covalent bonds after deposition onto surfaces are discussed
in the Gelest brochure entitled “Silane Coupling Agents: Connecting Across Boundaries�
Aminosilanes which are important in some hydrophilic surface treatments are covered in detail.
Further Reading
Silane Coupling Agents - General References and Proceedings
1. B. Arkles, Tailoring Surfaces with Silanes, CHEMTECH, 7, 766-778, 1977.
2. E. Plueddemann, “Silane Coupling Agents,� Plenum, 1982.
3. K. Mittal, “Silanes and Other Coupling Agents,� VSP, 1992.
4. D. Leyden and W. Collins, “Silylated Surfaces,� Gordon & Breach, 1980.
5. D. E. Leyden, “Silanes, Surfaces and Interfaces,� Gordon & Breach 1985.
6. J. Steinmetz and H. Mottola, “Chemically Modified Surfaces,� Elsevier, 1992.
7. J. Blitz and C. Little, “Fundamental & Applied Aspects of Chemically Modified Surfaces,�
Royal Society of Chemistry, 1999.
Substrate Chemistry - General References and Proceedings
8. R. Iler, “The Chemistry of Silica,� Wiley, 1979.
9. S. Pantelides, G. Lucovsky, “SiO2 and Its Interfaces,� MRS Proc. 105, 1988.
Hydrophobicity & Hydrophilicity
10. C. Tanford, “The Hydrophobic Effect� Wiley, 1973.
11. H. Butt, K. Graf, M. Kappl, “Physics and Chemistry of Interfaces,� Wiley, 2003.
12. A. Adamson, “Physical Chemistry of Surfaces�. Wiley, 1976.
13. F. Fowkes, “Contact Angle, Wettability and Adhesion,� American Chemical
Society, 1964.
14. D. Quere “Non-sticking Drops� Rep. Prog. Phys. 68, 2495, 2005.


Product Information
Molecular Weight
Product Code Boiling Point/mm Refractive Index
Product Name (Melting Point)
Specific Gravity

SIA0588.0
(AMINOETHYLAMINOMETHYL)PHENETHYL-298.46 126-30°/0.2 1.02 1.5083
TRIMETHOXYSILANE, 90% mixed m,p isomers flashpoint: > 110°C (>230°F) Other Physical
Properties
C14H26N2O3Si
H2NCH 2CH2NHCH 2
coupling agent for polyimides
photochemically sensitive (194nm)1 self-assembled monolayers2.
CH2
1. W. Dressick et al, Thin Solid Films, 284, 568, 1996. References
CH2
2. C Harnett et al, Appl. Phys. Lett., 76, 2466, 2000.
(CH3O)3Si

HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with water/moisture
[74113-77-2] TSCA HMIS: 3-1-1-X 25g/Â¥36,900 100g/Â¥120,000

Hazardous Rating Information
CAS#
(Health-Flammability-Reactivity)
Indicates Product listed
in TSCA Inventory (L = Low Volume Exemption; S = Significant New Use Restriction)




73
Cover
background photo:
Fluoroalkylsilane treated
multi-color red granite is both
hydrophobic and
oleophobic.




The Stenocara beetle,
an African desert species,
harvests water that adsorbs on
superhydrophilic bumps on its back,
then transfers droplets into
superhydrophophic channels
that lead to its mouth.



Gelest Inc.
11 East Steel Road
Morrisville, PA 19067
Phone (215) 547-1015
Fax: (215) 547-2484
www.gelest.com

Search    ENTER KEYWORD
ALL Chemical Property And Toxicity Analysis PAGES IN THIS GROUP
NAMECAS
ussteel_com---1a001.asp 7439-89-6 7429-90-5 7440-42-8 7440-70-2 7440-44-0 7440-47-3 7440-03-1 7440-50-8 7439-96-5 7439-98-7 7440-02-0 8049-19-2 7440-21-3 7704-34-9 7440-32-6 7440-62-2
ussteel_com---1a004.asp 7439-89-6 7440-42-8 7440-44-0 7440-47-3 7440-03-1 7440-50-8 7439-96-5 7439-98-7 7440-02-0 8049-19-2 7440-21-3 7704-34-9 7440-32-6 7440-62-2
ussteel_com---1ap01.asp 7439-89-6 7440-42-8 7440-44-0 7440-47-3 7440-03-1 7440-50-8 7439-96-5 7439-98-7 7440-02-0 8049-19-2 7440-21-3 7704-34-9 7440-32-6 7440-62-2
ussteel_com---1c001.asp 7439-89-6 7429-90-5 7440-42-8 7440-70-2 7440-44-0 7440-50-8 7439-96-5 8049-19-2 7440-21-3 7704-34-9
ussteel_com---1c004.asp 7439-89-6 7440-44-0 7440-50-8 7439-96-5 8049-19-2 7440-21-3 7704-34-9
ussteel_com---1h001.asp 7439-89-6 7429-90-5 7440-42-8 7440-70-2 7440-44-0 7440-47-3 7440-03-1 7440-50-8 7439-96-5 7439-98-7 7440-02-0 8049-19-2 7440-21-3 7704-34-9 7440-32-6 7440-62-2
ussteel_com---2c009.asp 7439-89-6 7429-90-5 7440-44-0 7440-50-8 7439-96-5 8049-19-2 7704-34-9 7440-31-5 7440-47-3
ussteel_com---2c010.asp 7439-89-6 7429-90-5 7440-44-0 7440-50-8 7439-96-5 8049-19-2 7704-34-9 7440-47-3
ussteel_com---3a017.asp 7439-89-6 7429-90-5 7440-36-0 7440-44-0 7439-96-5 8049-19-2 7440-21-3 7704-34-9 7440-31-5
ussteel_com---3c011.asp 7439-89-6 7440-70-2 7440-44-0 7440-50-8 7439-96-5 8049-19-2 7440-21-3 7704-34-9
ussteel_com---3c013.asp 7439-89-6 7429-90-5 7440-44-0 7439-96-5 8049-19-2 7704-34-9 7440-66-6
ussteel_com---3c014.asp 7439-89-6 7440-70-2 7440-44-0 7440-50-8 7439-96-5 8049-19-2 7440-21-3 7704-34-9 7440-36-0 7439-92-1 7440-31-5
ussteel_com---3c015.asp 7439-89-6 7440-70-2 7440-44-0 7440-50-8 7439-96-5 8049-19-2 7440-21-3 7704-34-9 7440-36-0 7439-92-1 7440-02-0 7440-31-5
ussteel_com---3c016.asp 7439-89-6 7429-90-5 7440-44-0 7440-50-8 7439-96-5 8049-19-2 7440-21-3 7704-34-9 7440-66-6
ussteel_com---3c017.asp 7439-89-6 7429-90-5 7440-36-0 7440-44-0 7439-96-5 8049-19-2 7440-21-3 7704-34-9 7440-31-5
ussteel_com---3c019.asp 7439-89-6 7429-90-5 7440-42-8 7440-70-2 7440-44-0 7440-47-3 7440-03-1 7440-50-8 7439-96-5 7439-98-7 7440-02-0 8049-19-2 7440-21-3 7704-34-9 7440-32-6 7440-62-2
ussteel_com---4a018.asp 7439-89-6 7429-90-5 7440-44-0 7440-47-3 7440-03-1 7440-50-8 7439-96-5 7439-98-7 7440-02-0 8049-19-2 7440-21-3 7704-34-9 7440-62-2
ussteel_com---4a020.asp 7439-89-6 7429-90-5 7440-42-8 7440-44-0 7440-47-3 7440-03-1 7440-50-8 7439-96-5 7439-98-7 7440-02-0 8049-19-2 7440-21-3 7704-34-9 7440-32-6 7440-62-2
ussteel_com---4c018.asp 7439-89-6 7429-90-5 7440-44-0 7440-47-3 7440-50-8 7439-96-5 7439-98-7 7440-02-0 8049-19-2 7440-21-3 7704-34-9
ussteel_com---4h018.asp 7439-89-6 7429-90-5 7440-42-8 7440-44-0 7440-47-3 7440-03-1 7440-50-8 7439-96-5 7439-98-7 7440-02-0 8049-19-2 7440-21-3 7704-34-9 7440-62-2
ussteel_com---4h019.asp 7439-89-6 7429-90-5 7440-42-8 7440-44-0 7440-47-3 7440-50-8 7439-96-5 7439-98-7 7440-02-0 8049-19-2 7440-21-3 7704-34-9 7440-62-2
ussteel_com---f-119.asp 02-18-2 1309-37-1 14808-60-7 1305-78-8 1309-48-4
warcopro_com---antifreeze.asp N/A
warcopro_com---brakefluid-pdf.asp 143-22-6 111-46-6 112-34-5 112-59-4 6881-94-3 112-35-6
warcopro_com---bulletin_concentratedantifreeze.asp N/A
warcopro_com---bulletin_coolantbulletin.asp N/A
warcopro_com---bulletin_multipurposegrease.asp N/A
warcopro_com---bulletin_powersteering.asp N/A
warcopro_com---bulletin_premiummotoroils.asp N/A
warcopro_com---carb_choke.asp 108-88-3 67-64-1 8052-41-3 67-56-1
warcopro_com---coolantmsds.asp 107-21-1
warcopro_com---dexroniii_mecron.asp 64742-65-0 64741-88-4 64741-89-5 64742-54-7 64742-55-8
warcopro_com---diesel_trmt.asp 800-20-6 91-20-3
warcopro_com---diesel_trmt_tech.asp N/A
warcopro_com---dot3_brakefluid.asp 143-22-6 111-46-6 112-34-5 112-59-4 6881-94-3 112-35-6
warcopro_com---economyoils.asp 68649-42-3
warcopro_com---gearoil_gl1.asp N/A
warcopro_com---gear_oil_gl4_msds2.asp N/A
warcopro_com---hyd1.asp N/A
warcopro_com---multipurposegrease.asp 64742-52-5 64742-65-0 64742-01-4
warcopro_com---oiltreatment-pdf.asp 64741-88-4 68649-42-3
warcopro_com---oiltreatment_msds.asp 64741-88-4
warcopro_com---powerformulacoolant-pdf.asp 107-21-1
warcopro_com---powersteering.asp 64742-65-0 64742-62-7 64742-01-4 64742-46-7 64742-58-1 64742-57-0 64741-88-4 64741-89-5 64742-54-7 64742-55-8 72623-87-1 72623-83-7
warcopro_com---powersteeringfluid-pdf.asp 64742-65-0 64742-62-7 64742-01-4 64742-46-7 64742-58-1 64742-57-0 64741-88-4 64741-89-5 64742-54-7 64742-55-8 72623-87-1 72623-83-7
warcopro_com---premium_motoroils.asp 68649-42-3
warcopro_com---semi_synthetic.asp 64741-88-4 64742-65-0 72623-87-1 72623-83-7 151006-60-9
www2_azmax_co_jp---hydrophobicity.asp N/A

Free MSDS Search ( Providing 250,000+ Material Properties )
Chemcas.com | Ads link:HBCCHEM.INC